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Prefácio 
 

A óptica está relacionada com o estudo da luz e dos fenómenos associados com a sua generalização, 
transmissão e detecção. Num sentido mais lato, a óptica inclui todos os fenómenos associados com as 
radiações infravermelhas e ultravioletas. A óptica geométrica considera que a luz se propaga 
rectilineamente, e está relacionada com as leis que controlam a reflexão e a refracção dos raios 
luminosos. A óptica física trata dos fenómenos que dependem da natureza ondulatória da luz, por 
exemplo a difracção, a interferência e a polarização (in dicionário de Física). 

A óptica é uma área em grande expansão com aplicações em física, engenharia e tecnologia. A 
emergência dos lasers, das fibras ópticas, da óptica não linear e de uma grande variedade de fontes 
semicondutoras e detectores fez com que as aplicações da óptica se estendessem a todos os ramos da 
ciência. 

A luz (radiação electromagnética) é a base da óptica. Sem luz não existiria óptica. Mas o que é a 
luz? Qual a sua natureza? A evolução do nosso entendimento sobre a natureza da luz é uma das 
narrações mais fascinantes da história da ciência. Nos primórdios da ciência moderna, séculos XVI e 
XVII, a luz era descrita ou como partículas ou como ondas. Sendo modelos incompatíveis, cada um deles 
gozou de um período de proeminência na comunidade científica. No século XIX tornou-se claro que de 
alguma forma a luz era ao mesmo tempo onda e partícula. Durante algum tempo este estado perplexo, 
denominado de dualidade onda-partícula, motivou os cientistas a encontrar uma solução para estes 
modelos da luz aparentemente contraditórios. Num certo sentido a solução foi encontrada através da 
criação da electrodinâmica quântica, contudo muitos cientistas concordam que o perfeito entendimento da 
natureza da luz é de alguma forma mais complexo. 

A luz pode ser representada fundamentalmente de duas formas, através da teoria corpuscular ou 
através da teoria ondulatória. A forma mais simples de representar a luz resulta da teoria corpuscular, 
segundo a qual a luz é representada através de raios luminosos rectilíneos (domínio da óptica 
geométrica). No entanto, quando não se pode desprezar o comprimento de onda da luz, por este ser de 
dimensões comparáveis às dimensões do sistema, é necessário ter em conta a natureza ondulatória da 
luz passando esta a ser representada através de ondas. Este é o domínio da óptica física.  

A característica essencial de uma onda é a sua não localização. Do ponto de vista clássico a 
propagação de uma onda através de um meio consiste numa perturbação ψ que se propaga nesse meio 
transportando energia e momento. As ondas mais familiares e de mais fácil visualização são as ondas 
mecânicas, nomeadamente as ondas em cordas, as ondas superficiais em líquidos, as ondas em molas e 
as ondas sonoras no ar. As ondas sonoras são longitudinais, isto é, o meio sofre uma perturbação na 
direcção de propagação da onda, enquanto que as ondas em cordas são transversais, nas quais a 
perturbação sofrida pelo meio se realiza numa direcção perpendicular à direcção de propagação da onda. 
Existem então dois tipos de ondas, as ondas longitudinais e as ondas transversais. 

Para ambos os casos, embora a energia transportada pela onda se propague com a onda, o meio 
material onde a onda se propaga permanece na sua região de equilíbrio. Para as ondas não existe 
transporte de meio material. Esta característica das ondas distingue-as claramente de um fluxo de 
partículas.  
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A propagação de uma onda num meio é descrita matematicamente através de uma equação 
diferencial, que é função da posição e do tempo e que se denomina de equação de onda. A forma mais 
geral da equação de onda a uma dimensão, é obtida a partir da condição de que qualquer solução da 
equação de onda tem de se propagar numa dada direcção, com velocidade constante, sem variação da 
sua forma ao longo do tempo relativamente a um sistema de eixos que se desloque com a mesma 
velocidade.  

Assim, uma onda que se propaga segundo a direcção do eixo dos xx, no sentido positivo ou 
negativo, é descrita através da equação 

 
 ( ) ( )tvxftx m=,ψ  

 
onde f representa uma função diferenciável e onde t, x e v representam o tempo, a direcção e a 
velocidade de propagação da onda respectivamente, indicando o sinal negativo que a onda se desloca no 
sentido positivo do eixo dos xx enquanto que o sinal positivo indica a situação oposta.  

A equação de onda diferencial a uma dimensão é dada pela equação 
 

 2

2

22

2 1
tvx ∂

∂
=

∂
∂ ψψ .  

 
A forma de onda mais simples é aquela cujo perfil é uma curva seno ou coseno, conhecidas como 

ondas harmónicas, sendo dada pela equação 
  
 ( )[ ]εψ += tvxkA msin ,  

 
onde A e k são constantes representando a amplitude e a constante de propagação da onda, podendo 
variar sem que provoquem alteração no carácter harmónico da onda. ε é a fase inicial da onda. Ao 
argumento da função seno chama-se fase da onda e representa-se por φ .  

As ondas em seno ou coseno são periódicas, representando pulsos regulares que se repetem 
infinitamente. A única diferença que existe entre a utilização de um função seno ou de uma função 
coseno na representação da forma de uma onda reside no facto de uma estar adiantada ou atrasada 
relativamente à outra de 2π  radianos (90º). Devido à sua periodicidade, a forma de uma onda repete-se 

sempre que exista um desvio de um múltiplo inteiro do comprimento de onda (λ) em todos os seus 
pontos. Matematicamente esta situação pode ser expressa através da seguinte equação 
 
 ( )[ ]{ }ελψ +−+= tvxkAsin ,  

 
onde λ representa o comprimento de onda ou o período espacial. A relação entre o comprimento de onda 
e a constante de propagação é dada através da seguinte equação: 
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λ
π2

=k . 

 
Alternativamente, se a onda for observada para uma posição fixa, ela repete-se sempre que exista 

uma diferença no tempo de um múltiplo do período temporal T para todos os pontos. Neste caso a 
equação para a onda é dada por 
  
 ( )[ ]{ }εψ ++−= TtvxkAsin  

 
obtendo-se assim uma relação para a velocidade de propagação da onda em função do comprimento de 
onda, dada por: 
 
 λν=v ,  
 
sendo T1=ν  a frequência temporal da onda. Outras quantidades muito utilizadas no movimento 

ondulatório são a frequência angular temporal (ω ) dada pela equação πνω 2=  e o número de onda 
(κ ), dado pela equação λ1=κ . Todas as quantidades que foram mencionadas são igualmente 
aplicáveis a ondas não harmónicas mas periódicas.  

Utilizando as definições anteriores pode exprimir-se uma onda harmónica, a propagar-se num 
dado meio, através das equações: 

 
( )[ ]εψ += tvxkA msin  

 
( )[ ]εωψ += tkxA msin   

 
que são as mais utilizadas na representação de uma onda. Estas ondas são ondas ideais variando de 
∞− até ∞+ com uma única frequência constante, portanto com um único comprimento de onda, ou seja 

monocromáticas. Na prática não se verifica isto, as ondas reais não são monocromáticas sendo 
compostas por mais do que um comprimento de onda.  

A velocidade de fase de uma onda é dada pela razão entre a frequência angular e a constante de 
propagação. Qualquer ponto de uma onda harmónica cuja amplitude seja constante move-se para que a 
fase se mantenha constante no tempo. É o que acontece no caso das ondas circulares geradas na 
superfície de um líquido, para as quais os círculos concêntricos representam curvas onde a fase se 
mantém constante no tempo, para todos os seus pontos. 

No caso de existirem duas funções de onda 1ψ  e 2ψ  que sejam ambas soluções da equação de 
onda, a função de onda resultante da adição dessas duas funções de onda é também solução da 
equação de onda. Este facto é conhecido como princípio da sobreposição e significa que quando duas 
perturbações individuais atingem um mesmo ponto do espaço elas sobrepõem-se, adicionando-se ou 
subtraindo-se uma à outra, sem que o seu movimento seja afectado. Para duas funções de onda com 
amplitudes semelhantes o resultado da sobreposição variará, dependendo da diferença de fase entre 
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elas, entre um valor máximo no caso de as duas funções de onda estarem em fase e um valor mínimo 
para a situação de oposição de fase. Este fenómeno é chamado de interferência. 

Até aqui só foram referenciadas as funções de onda unidimensionais. No entanto a situação mais 
geral é a existência de ondas tridimensionais definidas por uma equação de onda também tridimensional 
que é função de x, y, e z (em coordenadas rectangulares). A equação de onda tridimensional é uma 
generalização da equação 4-2 a uma dimensão e é dada por: 

 

 2

2

2
2 1

tv ∂
∂

=∇
ψψ  

 
onde ∇  representa o operador Laplaciano. As ondas tridimensionais podem ser divididas em três grupos 
principais: as ondas planas, as ondas esféricas e as ondas cilíndricas. As ondas planas são o caso mais 
simples de uma onda tridimensional. Existem quando todas as superfícies, onde a perturbação apresenta 
fase constante, formam um conjunto de planos perpendiculares à direcção de propagação (ver figura 4-
1(a)). Os feixes de luz laser colimados são um exemplo de uma frente de onda plana a propagar-se no 

espaço. A expressão matemática para uma onda plana perpendicular a um dado vector k (vector de 
propagação), que passa por um ponto genérico r  de coordenadas ),,( 000 zyx , é constrk =

rr
. . Assim, a 

função de onda para uma onda plana harmónica a propagar-se no espaço é dada por 
 

 ( )εωψ += trkiAetr m
rr

.),(  

 
onde A, ω e k são constantes, que conforme já foi referido representam a amplitude, a frequência angular 
e a constante de propagação da onda, respectivamente. À medida que esta perturbação se propaga ao 
longo da direcção k

r
, possui para cada ponto do espaço e do tempo uma dada fase. Para um dado 

tempo, as superfícies que unem todos os pontos de igual fase são conhecidas como frente de ondas. Se 
a amplitude A for constante em todos os pontos, a função de onda assumirá o mesmo valor em toda essa 
frente de onda. No caso mais geral como A é função da posição, a amplitude não é constante em toda a 
frente de onda e a onda deixa de ser homogénea.  

A importância das ondas planas em óptica advém em primeiro lugar da facilidade com que se 
podem gerar e em segundo lugar porque qualquer onda tridimensional pode ser expressa como uma 
combinação de ondas planas com amplitudes e direcções de propagação distintas. 
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A=ψ  0=ψ  
A−=ψ  0=ψ

0=ψ  

λ  
)(rψ  

A+  

A−  

0  

k  

k  

(a) 
 

r 

r

ψ

(b) 
de Hecht, E., "Optics", Addison Wesley, pag.33 (1998). 

(c) 
 

Figura 1 - Representação esquemáticas das ondas tridimensionais planas (a), esféricas (b) e cilíndricas (c). 
 
 

Relativamente às ondas esféricas elas são constituídas por um conjunto de esferas concêntricas 
que aumentam de diâmetro à medida que se expandem no espaço (ver figura 4-1(b)). Este tipo de ondas 
são descritas, por questões de conveniência, em termos de coordenadas esféricas. A função de onda 
para ondas tridimensionais esféricas tem a forma 
 

 
⎟
⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛=

εω
ψ

trki
e

r
tr

m.
),( A  

 
onde A é uma constante que representa a intensidade da fonte. Devido ao factor r1  as ondas esféricas 
diminuem de amplitude alterando o seu perfil à medida que se expandem no espaço.  

O terceiro tipo de ondas tridimensionais é as ondas cilíndricas. Quando se faz incidir uma frente de 
onda plana num alvo plano opaco contendo uma fenda fina e suficientemente longa obtém-se uma 
perturbação sob a forma de uma onda cilíndrica (na figura 4-1(c)). Neste caso o fenómeno é descrito em 
termos de coordenadas cilíndricas. A função de onda para as ondas cilíndricas apresenta a seguinte 
forma 
 

 
⎟
⎠
⎞⎜

⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

trki
e

r
Atr

ω
ψ

m.
),(  

 
A situação mais comum é a existência de várias ondas a atingirem um mesmo ponto ou a 

coexistirem ao longo de uma mesma direcção. É então necessário, de acordo com o princípio da 
sobreposição, mencionado anteriormente, calcular o efeito resultante da combinação dessas várias 
ondas. Tal como já foi referido, a perturbação resultante da sobreposição de várias ondas num 
determinado ponto, é dada pela soma algébrica das várias ondas individuais. Duas situações podem 
ocorrer originando resultados completamente distintos: as ondas que se sobrepõem terem amplitudes e 
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fases diferentes mas terem a mesma frequência ou então para além de poderem ter amplitudes e fases 
diferentes também terem frequências diferentes. 

No caso da adição de ondas com a mesma frequência a propagarem-se na mesma direcção, 
resulta ainda uma onda harmónica com a mesma frequência das ondas constituintes mas com amplitude 
e fase diferentes. A expressão geral para a perturbação global resultante da sobreposição de N 
perturbações é a seguinte 
  
 [ ]),(sin),( εαωψ xtAtx +=  

 
onde ),( εα x  representa a parte espacial da fase da perturbação resultante e que é dada por 
 

 
∑
∑

=

== N
i ii

N
ii

A

A

1

1

cos
sin

tan
α

α
α  

 
e A representa a amplitude da perturbação resultante dada por: 
 

 )cos(2 2
1 1

2
1

22
jij

N
j

N
i i

N
i i AAAA αα −+= ∑ ∑∑ = ==  

 
Se as fases das diversas perturbações forem aleatórias, a diferença de fase também é aleatória. 

Nesse caso a soma dos termos em coseno vai tender para zero à medida que N aumenta. Assim para 
fontes idênticas, a amplitude da perturbação total será dada por 2

1
22

i
N
i i NAAA ==∑ =

. O quadrado da 

amplitude de N fontes idênticas com fases aleatórias, é igual à soma dos quadrados das amplitudes de 
cada uma das fontes. 

Se pelo contrário as N fontes (idênticas) forem coerentes e em fase no ponto de observação, isto é 

ji αα = , a perturbação resultante será dada por 222

1
22 )( i

N
i i ANAA == ∑ =

. O resultado é que o quadrado 

da amplitude de N fontes coerentes idênticas com a mesma fase é igual a 2N  vezes a soma dos 
quadrados das amplitudes de cada uma das fontes. 

Ainda na situação das perturbações terem a mesma frequência mas propagarem-se em sentidos 
opostos, a perturbação resultante é uma onda estacionária, em oposição a uma perturbação a propagar-
se cujo perfil é constante no espaço e é dado por: 
 
 tkxAtx ωψ cossin2),( =  

 
nesse caso, a amplitude é igual a kxA sin2 , variando harmonicamente com tωcos .  

Outra situação, é a sobreposição de perturbações com amplitudes semelhantes mas com 
frequências diferentes. Neste caso a perturbação resultante deixa de ser harmónica sendo dada por: 
 

 )cos()cos(),(2),( txktxktxAtx mm ωωψ −−=  
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onde ω  e k  representam a frequência angular média e a constante de propagação média 
respectivamente e mω  e mk  representam a frequência de modulação e a constante de propagação de 
modulação, respectivamente. O efeito global é as perturbações de baixas frequências a servirem de 
envolvente, modulando as perturbações de altas frequências. A perturbação resultante apresenta então o 
fenómeno de batimentos, sendo a frequência de batimento dupla da frequência de modulação da 
envolvente. A velocidade de propagação das perturbações das altas frequências é a velocidade de fase, 
enquanto que a velocidade de propagação da envolvente (perturbações das baixa frequência) é 
denominada velocidade de grupo.  

No caso específico da luz sendo os campos eléctrico e magnético, campos vectoriais, a luz é 
então um fenómeno vectorial. A perturbação resultante da sobreposição de ondas electromagnéticas 
pode ser expressa em função do campo eléctrico ou do campo magnético. Regra geral, nas equações de 
onda utiliza-se o campo eléctrico para variável por ser mais simples de ser detectado.  

De acordo com o princípio da sobreposição, a intensidade do campo eléctrico num ponto do 
espaço, resultante da interacção de vários campos eléctricos nesse ponto, é a soma algébrica das 
intensidades de todos os campos individuais actuantes num ponto. Como o campo eléctrico possui uma 
elevadíssima frequência de variação, da ordem dos Hz1014 , não é possível ou é impraticável trabalhar-
se com valores instantâneos do campo. Trabalha-se então com uma quantidade denominada de 
irradiância, que é proporcional à média no tempo do quadrado da intensidade do campo eléctrico. A 
irradiância é uma quantidade que tem a vantagem de poder ser medida directamente através de 
detectores específicos. Considerem-se então duas ondas da forma  
 

 )cos(),( 11011 εω +−⋅= trkEtE r  

 
 )cos(),( 2022 εω +−⋅= trkEtrE 2  

 

onde 1k  e 2k  representam os vectores de propagação de cada uma das ondas, r  representa o vector 

de posição e 1ε  e 2ε  representam as fases iniciais de cada onda. Através da definição da irradiância, 
vista anteriormente, obtém-se a seguinte expressão: 
 

 T><=
2

0 EcI ε .  

 

A irradiância total resultante da sobreposição de duas ondas ),(1 trE  e ),(2 trE , é então dada por 

1221 IIII ++= , onde I12 é o termo de interferência dado por T><= 2112 .2 EEI . Calculando este termo 
em função da diferença de fase global que resulta da diferença de percursos e de fases iniciais das duas 
ondas, obtém-se a expressão: 
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 δcos020112 EEI ⋅=  

 

Considerando que 01E  é paralelo a 02E  (que é a situação mais comum) o termo de interferência 
vem então dado por  
  

 δcos2 2112 III =  

 

onde )( 2211 εεδ −⋅−+⋅= rkrk é a diferença de fase global entre as duas ondas.  
A irradiância total é então dada pela expressão 

 

 δcos2 2121 IIIII ++= . 

 
No caso de todas as ondas apresentarem amplitudes iguais a 0I , a expressão anterior reduz a  
 
 )cos1(2 0 δ+= II   

 
ou ainda a  

 
2

cos4 2
0

δII = . 

 
Em conclusão pode afirmar-se que: 
 

 Duas ondas ortogonais linearmente polarizadas não interferem, uma vez que 012 =I . 

 A irradiância máxima é obtida quando 1cos =δ , isto é, quando Lππδ 4,2,0 ±±=  ou seja 
quando as duas ondas estão em fase. Esta é a condição de interferência totalmente construtiva. 

 A irradiância mínima é obtida quando 1cos −=δ . Neste caso Lπππδ 53, ±±±=  e as duas 
ondas estão em oposição de fase. É a condição de interferência totalmente destrutiva.  

 Quando 1cos0 << δ  as ondas estão desfasadas entre 0º e 90º resultando a condição de 
interferência construtiva max21 IIII <<+ . 

 Quando 1cos0 −>> δ  as ondas estão desfasadas entre 90º e 180º resultando a condição de 
interferência destrutiva, min21 IIII >>+ . 

 Quando 0cos =δ  as ondas estão desfasadas de 90º, que é a situação de quadratura onde 

21 III += . 
 

Para finalizar esta secção que se reveste de maior importância para o estudo dos fenómenos de 
interferência e difracção, deve ter-se em mente que: 
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 Para que dois feixes luminosos produzam um padrão estável de interferência, devem ter 
aproximadamente a mesma frequência, caso contrário existirão variações na diferença de fase 
extremamente rápidas, o que origina que o valor médio do termo de interferência seja zero durante 
o intervalo de detecção.  

 Para que um padrão de franjas possa ser observado não é necessário que as duas fontes estejam 
em fase uma com a outra mas que a diferença de fase entre elas permaneça constante, isto é, que 
as duas fontes tenham coerência espacial. 
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Capítulo 1  
 

Óptica Geométrica 
 
 
 

1.1 Introdução 
 
O tratamento da luz como um movimento ondulatório permite considerar, para uma região de 
aproximação, o comprimento de onda como sendo muito pequeno quando comparado com as dimensões 
dos componentes do sistema óptico. Esta região de aproximação é denominada óptica geométrica. 
Quando o carácter da luz não pode ser ignorado, o campo é conhecido como óptica física. Assim, a 
óptica geométrica é um caso especial da óptica física podendo ser descrito por:  

 
 { } { }geométrica  óptica=

→
física  ópticalim

0λ
 

 
Como o comprimento da luz (em média 500 nm) é muito pequeno quando comparado com as 

dimensões dos objectos do dia a dia, o percurso dos feixes de luz através de aberturas ou contornando 
obstáculos pode ser tratado pela óptica geométrica.  

Dentro da aproximação representada pela óptica geométrica, a luz é entendida como viajando em 
linha recta (raios luminosos) a partir da fonte de luz. O raio é então o percurso ao longo do qual a energia 
luminosa é transmitida de um ponto para outro num sistema óptico. O raio luminoso é uma construção 
muito útil, embora abstracta no sentido em que um feixe luminoso não pode ser tão fino de forma a 
assemelhar-se a uma linha recta. Os raios luminosos são perpendiculares às frentes de onda. 

Quando um raio luminoso atravessa um sistema óptico consistindo de vários meios homogéneos 
colocados sequencialmente, o percurso óptico é uma sequência de segmentos rectilíneos. As 
descontinuidades nos segmentos ocorrem cada vez que a luz é reflectida ou refractada. As leis da óptica 
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geométrica que descrevem a direcção subsequente dos raios luminosos são a lei da reflexão e a lei da 
refracção. 

 
 

1.2 A Propagação da Luz 
 
Nesta secção vamos estudar os fenómenos de reflexão, refracção e transmissão da luz, os quais serão 
descritos através de ondas e raios luminosos. Qualquer forma de interacção da luz com a matéria pode 
ser encarada como um fenómeno que associa um feixe de fotões e uma rede de átomos suspensos, 
através de campos electromagnéticos, no vazio. Assim, vamos falar da dispersão da luz pela matéria. Os 
processos de reflexão, refracção e transmissão são manifestações macroscópicas dos processos de 
dispersão que ocorrem a um nível microscópico. 

Se considerarmos um feixe da luz solar com diâmetro reduzido e constituído por uma gama larga 
de frequências a propagar-se no vazio, chegaremos à conclusão que à medida que o feixe se propaga vai 
aumentando o seu diâmetro, embora a sua energia se continue a propagar à velocidade da luz. Não 
iremos observar dispersão, o feixe não será visível de lado. A luz não se cansa nem se degrada (a luz de 
estrelas de outras galáxias chega à Terra depois de percorrer centenas de milhares de anos). No entanto 
se no vazio se injectar ar (gás transparente), algumas moléculas de azoto e oxigénio, entre outras, vão 
fazer com que os fotões que constituem o feixe de luz sejam dispersos em todas as direcções tornando-
se visível. Esta é a razão para que o céu apresente uma tonalidade azul de dia e tonalidades ricas em 
vermelho ao nascer e ao pôr-do-sol. 

 

1.2.1 Transmissão e índice de refracção 
 

A transmissão da luz num meio homogéneo constitui um processo contínuo de dispersão. Cada 
dispersão introduz variações no campo luminoso, sendo o resultado uma variação da velocidade com que 
o feixe é transmitido (velocidade de fase) relativamente à velocidade da luz no vazio. Isto equivale a 
atribuir ao meio de transmissão, um valor para a razão entre a velocidade da luz e a velocidade de fase 
(c/v), diferente da unidade. Ao valor da razão entre a velocidade da luz e a velocidade de fase chama-se 
índice de refracção e representa-se pela letra n. 

Os valores do índice de refracção variam consoante os diferentes materiais atravessados, para 
além de variarem com o estado físico (pureza, pressão, temperatura, etc.). Na tabela 1-1 apresentam-se 
alguns valores de índices de refracção para diversos materiais. 
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Tabela 1- 1  Índices de refracção de várias substâncias 
Substância Índice de refracção 

Ar 1,00029 

Gelo 1,310 

Água 1,333 

Silício amorfo 1,4584 

Vidro “crown” 1,520 

Cloreto de sódio 1,544 

Vidro “flint” 1,580 

Vidro “flint” denso 1,660 

Zircónio 1,923 

Diamante 2,417 

Rutílio 2,907 
 
 
A dispersão dos fotões gera ondas secundárias, que ao combinar-se com o que resta da onda 

primária vai constituir uma única onda, que será a onda transmitida. Tanto a onda primária como a onda 
secundária propagam-se no vazio ( 1=n ) à velocidade da luz. No entanto num meio material ( 1≠n ) 
uma onda luminosa propaga-se com velocidades inferiores à velocidade da luz. Essa velocidade está 
relacionada com o índice de refracção do meio atravessado. O conceito de índice de refracção traduz o 
modo como os processos de absorção e de emissão alteram (atrasam ou avançam) a fase dos fotões 
dispersos, mesmo que os fotões se propaguem à velocidade c. 

 

1.2.2 Reflexão 
 
Quando um raio luminoso é reflectido numa interface (zona de separação) dividindo dois meios ópticos, 
parte da energia é rectro-dispersa, fenómeno conhecido como reflexão. 

Consideremos um bloco de vidro homogéneo de faces planas, polidas e paralelas e um feixe 
luminoso vindo do ar a atravessar o bloco de vidro, tal como se apresenta na figura 1-1. 

 



  Óptica Geométrica 

- 13 - 

 Feixe Luminoso   

Feixe reflectido 
externamente  

Feixe reflectido 
internamente  

Figura 1- 1 Feixe luminoso a propagar-se num meio óptico e homogéneo e as respectivas reflexões externa e 
interna. 
 
 

Para um bloco de vidro no ar e em incidência normal, cerca de 4% da energia incidente é reflectida 
na primeira superfície de separação (interface ar-vidro). Como a luz se propaga de um meio menos denso 
para um meio mais denso diz-se que se trata de reflexão externa. Assim, a reflexão externa ocorre 
quando o índice de refracção do meio incidente (ni) é inferior ao índice de refracção do meio transmitido 
(nt). Do mesmo modo cerca de 4% da energia incidente na superfície de separação vidro-ar é reflectida 
internamente. Para incidência normal, a reflexão interna ocorre quando o índice de refracção do meio 
incidente (ni) é superior ao índice de refracção do meio transmitido (nt). 

 

1.2.3 A lei da reflexão 
 
Consideremos um feixe luminoso no ar a incidir na superfície plana de um bloco de vidro (ver figura 1-2). 
À medida que a frente de onda relativa ao feixe luminoso incidente percorre o meio incidente, cada 
elemento desse meio vai radiar um feixe de fotões (sob a forma de uma onda esférica) que se propaga no 
meio de incidência. Como o comprimento de onda é muito superior à separação entre as moléculas do 
meio, as ondas rectro-dispersas para o meio de incidência propagam-se em fase, sobrepondo-se 
construtivamente ao longo de uma direcção bem definida, dando origem a um feixe reflectido bem 
definido. 
 

 

θ r 

θ t 

θ i 

Interface 
Vidro (nt) 

Ar (ni) 

Raio 
incidente 

Raio 
reflectido 

Raio 
refractado 

Normal à 
superfície Plano de  

incidência 

 
Figura 1- 2 Esquema óptico da reflexão e refracção numa interface entre dois meios ópticos, mostrando os 
raios incidente, reflectido e refractado (transmitido) no plano de incidência.  
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A direcção do feixe reflectido é função do ângulo que a direcção de propagação da onda incidente 
faz com a normal à superfície, isto é, o ângulo de incidência. O mesmo raciocínio pode ser aplicado para 
as ondas que se propagam no interior do vidro formando o feixe refractado ou transmitido, que é função 
do ângulo que a direcção de propagação faz com a normal à superfície (ângulo de refracção). 

Retornemos à parte reflectida do raio que incide na interface entre o ar e o vidro. Analisando a 
figura 1-3, vemos que a linha AB representa uma frente de onda incidente e a linha CD  representa uma 

frente de onda reflectida. Então por reflexão AB  transforma-se em CD . Para que todas as ondas 
emitidas, resultantes da dispersão pelas moléculas do meio incidente, se sobreponham e constituam uma 
onda reflectida única, BDAC = . Como os dois triângulos têm em comum a hipotenusa, temos que: 

 

 
ACBD

ri θθ sinsin
=   

 
donde  
 
 ri θθ sinsin =   
 
e portanto ri θθ = , equação que constitui a lei da reflexão. 

 

A 

B 

D 

C 

θ i θ r 
Meio  

Figura 1- 3 Esquema representativo da incidência e reflexão num determinado meio. 
 
 

Lei da reflexão: quando um raio luminoso é reflectido numa interface separando dois meio ópticos, 
o raio reflectido permanece no plano de incidência, sendo o ângulo de reflexão igual ao ângulo de 
incidência. O plano de incidência é o plano que contém o raio incidente e a normal à superfície no ponto 
de incidência. 

Devemos ter em atenção que nem todas as superfícies onde se processa a reflexão são polidas. 
Por isso temos que distinguir entre reflexões em superfícies polidas e reflexões em superfícies rugosas 
(não polidas). Desde que as depressões ou elevações existentes à superfície sejam pequenas, 
relativamente ao comprimento de onda, as ondas dispersas apresentam basicamente a mesma fase 
quando ri θθ = . Neste caso estamos perante a reflexão dita especular. Por outro lado, quando a 
rugosidade da superfície é significativa relativamente ao comprimento de onda, apesar dos ângulos de 
incidência e reflexão serem iguais para cada raio, o conjunto dos raios reflectidos dá origem a um feixe 
que não se propaga numa direcção bem definida. Neste caso estamos perante a reflexão dita difusa. 
Enquanto na reflexão especular todos os raios de um feixe de luz colimado, incidentes numa superfície, 
obedecem à lei da reflexão numa superfície plana e são reflectidos também como um feixe colimado, na 
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reflexão difusa embora a lei da reflexão seja obedecida localmente para cada um dos raios, como a 
superfície reflectora é rugosa os raios de luz do feixe colimado são reflectidos em várias direcções 
resultando numa luz reflectida de forma difusa.  

 

1.2.4 Refracção 
 

Consideremos um feixe de luz a incidir obliquamente numa interface entre dois meios, segundo 
um ângulo de incidência diferente de zero. O resultado é a existência de um feixe transmitido para o 
interior do meio de transmissão, que apresenta um desvio angular relativamente à direcção do feixe 
incidente, tal como se pode ver na figura 1-4.   

 
 

A 

B 

E 

D 

nt 

ni 

θt 
θi 

vi Δt 

vt Δt 

 
Figura 1- 4 Esquema para a refracção de uma frente de onda numa interface entre dois meios ópticos. 

 
 
Cada superfície de onda é uma superfície de fase constante e, na medida em que a fase de onda 

global é atrasada pelo meio de transmissão, cada frente de onda é de algum modo retida na superfície de 
descontinuidade. 

Observando a figura 1-4 concluiu-se que no intervalo de tempo Δt, o ponto B de uma frente de 
onda a propagar-se à velocidade iv chega ao ponto D e que a nova posição do ponto A inicialmente 

sobre a interface é o ponto E.  
Se o meio de transmissão tiver um índice de refracção superior ao meio de incidência então 

it vv >  donde BDAE <  e a orientação da frente de onda altera-se. A frente de onda refractada estende-
se de E a D, fazendo um ângulo tθ  com a superfície de descontinuidade. Os triângulos ABD e AED têm 

uma hipotenusa comum ( AD ). Então, 
 

 
AEBD

ti θθ sinsin
=  
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como tvBD iΔ=  e tvAE tΔ= , temos 
 

 
t

t

i

i

vv
θθ sinsin

=  

 
e como ii vcn =  e tt vcn = obtemos  
 
 ttii nn θθ sinsin = . 
 
 Esta equação é conhecida como a lei de Snell ou lei da refracção que afirma: que quando um 
raio luminoso é refractado numa interface separando dois meios ópticos, o raio transmitido permanece no 
plano de incidência sendo o seno do ângulo de refracção directamente proporcional ao seno do ângulo de 
incidência.  

 
Então das leis de reflexão e de refracção conclui-se que os raios incidente, reflectido e transmitido 

pertencem todos ao plano de incidência.   
Quando ti nn < , ou seja quando a luz se propaga de um meio de menor índice de refracção para 

um meio com índice de refracção superior, da lei de Snell resulta que ti θθ sinsin >  donde ti θθ > , isto 

é, os raios luminosos aproximam-se da normal. Por outro lado se ti nn > , quando a luz se propaga de 
um meio com maior índice de refracção para um meio com índice de refracção inferior, os raios luminosos 
afastam-se da normal. 

Se utilizarmos o índice de refracção relativo entre os dois meios (nti) em que itti nnn = , a lei de 
Snell pode ser escrita como 

 

ti
t

i n=
θ
θ

sin
sin  

 
Outra conclusão que se pode reter da lei de refracção, é que o comprimento de onda do feixe 

transmitido diminui, uma vez que a frequência se mantém inalterada e a velocidade diminui. Como 
nvcc == νλ , vem que n0λλ = , onde λ é o comprimento de onda do meio transmitido e λ0 é o 

comprimento de onda do meio incidente (vazio). 
 
 

1.3 O Princípio de Huyghens 
 
Huyghens foi um físico Alemão, que em 1690 enuncio um princípio no qual a luz podia ser vista como 
uma série de pulsos, emitidos a partir de cada ponto de um corpo luminoso e a propagar-se através das 
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partículas do éter (meio elástico que preencheria todo o espaço). O princípio de Huyghens diz que cada 
ponto de uma frente de onda primária constitui uma fonte para ondas esféricas secundárias, e a posição 
da frente de onda primária num instante posterior é determinada pela envolvente de todas estas ondas 
secundárias (fig. 1-5 e 1-6). Apesar das suas limitações, o princípio de Huyghens permite obter a lei de 
Snell. No séc. XIX, Fresnel (um matemático Francês) fez alterações ao princípio de Huyghens, 
introduzindo a ocorrência de interferências. 
 

c t 

B' B 

A' A 

B 

B' 

A' 

A 

 
Figura 1- 5 Ilustração do princípio de Huyghens para ondas planas e esféricas. 

 

 

O 

B 

A 

S' 

S 

P' 

P 

 
Figura 1- 6 Construção de Huyghens para uma frente de onda obstruída. 

 
 

Consideremos a figura 1-7, onde se representa uma frente de onda AC a incidir numa interface XY, 
segundo um ângulo de incidência iθ , formado pelos raios AD, BE e CF com a normal à interface PD. Se 
não existisse interface, após um determinado intervalo de tempo iríamos ter a frente de onda GI. A 
inclusão de uma superfície de separação reflectora determina que, no mesmo intervalo de tempo que a 
frente de onda AC demoraria a atingir GI, essa mesma frente atinge IM.  
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Figura 1- 7 Construção de Huyghens para demonstração da lei da reflexão. 

 
 
Suponhamos que o raio CF num intervalo de tempo Δt chega ao ponto I, durante o mesmo 

intervalo de tempo, o raio BE avançou de E até J continuando depois da reflexão até à distância 
equivalente de JH (se não existisse interface), isto é, até ao ponto N. O mesmo tipo de raciocínio pode 
ser aplicado ao raio AD. O ponto D, no mesmo intervalo de tempo que demoraria a chegar a DG (se não 
existisse interface), depois da reflexão avançou da mesma distância e chegou ao ponto M. Assim, após 
um intervalo de tempo, a nova frente de onda que tem de ser tangente aos raios luminosos nos pontos I, 
N e M será IK. O raio reflectido representativo é o raio DL representado na figura 1-7. A normal à interface 
(PD) para esse raio é usada para definir os ângulos de incidência e de reflexão. Se as distâncias DG e 
DM são iguais, então os ângulos formados pelos triângulos GDI e IDM também são iguais, donde se pode 
concluir que ri θθ = . 

  Observemos agora a figura 1-8 que tal como na figura 1-7 representa uma frente de onda AC a 
incidir numa interface XY, segundo um ângulo de incidência iθ , formado pelos raios AD, BE e CF com a 
normal à interface PD. Neste caso as velocidades de propagação no meio de incidência e de transmissão 
são diferentes. Os pontos D, E e F da frente de onda incidente chegam aos pontos D, J e I da interface 
em tempos diferentes. Na ausência da interface formar-se-ia a frente de onda GI quando o raio CF 
chegasse a I. Durante a progressão do raio CF para atingir o ponto I num intervalo de tempo Δt, o raio AD 
entra no meio de transmissão deslocando-se com uma velocidade inferior à do meio de incidência. Se a 
distância DG é tv iΔ  e a distância DM é tvtΔ  então teremos: 

 
tvDMtvDG ti Δ=Δ=   e    donde, 
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Figura 1- 8 Construção de Huyghens para demonstração da lei da refracção. 

 
 

Do mesmo modo para o ponto J teremos que, 
 

JH
n
n

NJ
t

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
Da relação geométrica entre os ângulos ti θθ  e , formados pelo raio incidente AD e pelo raio 

refractado DL com a normal ao plano de incidência, vem que 
 

 sin  e  sin
DI

DMθ
DI
FIθ ti == vem:  

 

 
t

i

θ
θ

DM
DG

DM
FI

sin
sin

==  

 
como  
 
 ( )DGnnDM ti=   
temos então que  
 
 ttniin θθ sinsin =  

 
que é a lei de Snell para a refracção numa interface entre dois meios ópticos. 
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1.4 O Princípio de Fermat 
 

No séc. II a.C., Hero de Alexandria escreveu que quando a luz se propaga entre dois pontos faz o 
menor trajecto possível. Para a propagação entre dois pontos no mesmo meio, o menor percurso é a 
linha recta que une os dois pontos. Quando a luz que parte de um ponto A sofre uma reflexão numa 
superfície plana a chega ao ponto B, ela poderia ir por vários caminhos como se pode ver na figura 1-9, 
onde estão representados três percursos possíveis para se ir do ponto A até ao ponto B. Comecemos por 
considerar o percurso ACB. Construa-se o ponto A’ de tal modo que AO seja igual a AO’. Deste modo os 
triângulos AOC e A’OC são iguais, AC é igual a A’C e a distância percorrida pelo raio de luz desde A até 
B passando por C é a mesma que é percorrida desde A’ até B passando por C. A distância mais curta 
desde A’ até B é a linha recta A’DB, donde o percurso ADB é o escolhido pelo raio para ir de A até B. Da 
geometria dos raios luminosos podemos concluir que o ângulo ADO é igual ao ângulo A’DO, o qual por 
sua vez é igual ao ângulo BDO’. Assim para o percurso mais curto temos que ri θθ = , que é a lei da 
reflexão. 
 

 A 

A’ 

B 

C D E 

θ i θ r 

O O’ 

 
Figura 1- 9 Esquema para provar a lei de reflexão a partir do princípio de Hero. 

 
 

Em 1657 um matemático Francês chamado Pierre de Fermat, generalizou o princípio de Hero para 
provar a lei da refracção. Se um ponto B estiver abaixo da superfície de separação, isto é, se estiver no 
meio de transmissão (ver figura 1-10), o percurso correcto para ir de A a B não é o caminho mais curto ou 
a linha recta AB, para a qual o ângulo de incidência seria igual ao ângulo de refracção, o que ia contra a 
lei empírica estabelecida para a refracção. 
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Figura 1- 10 Esquema para provar a lei de refracção a partir do princípio de Fermat. 

 
 

Tendo em conta a economia existente na natureza, Fermat supôs, em vez do percurso mínimo, 
que o raio de luz que viaje de A até B toma o caminho que demore o menor tempo possível a percorrer 
esse percurso (princípio do tempo mínimo), que é uma generalização que inclui o princípio de Hero e se 
aplica tanto à reflexão como à refracção. Se a luz se desloca mais devagar no segundo meio, tal como é 
assumido na figura 1-10, os raios luminosos inclinam-se na interface de forma que o percurso demore 
menos tempo no segundo meio, minimizando o tempo total de percurso entre A e B. Matematicamente 
para minimizar o tempo total temos que minimizar a expressão 

 

ti v
OB

v
AOt +=  

 
onde v i e  v t são as velocidades da luz nos meios incidente e transmitido, respectivamente. Da figura 1-
10 e empregando o teorema de Pitágoras obtemos: 
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v
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2222 −+

+
+

=  

Para minimizar a expressão anterior temos que calcular a derivada do tempo em relação à posição 
e igualar a zero, isto é, 0=dxdt . Assim temos 
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mas da figura 1-10 tiramos que 
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ou seja 
 

tiit vv θθ sinsin = . 
 

como ncv = obtemos então  
 

ttii θnθn sinsin = ,  
 

que é a Lei de Snell. 
 
 

1.5 O Princípio da Reversibilidade 
 
Se nas figuras 1-9 e 1-10 o papel dos pontos A e B forem trocados, de forma que B seja agora a fonte de 
luz de onde emanam os raios luminosos e A o ponto final do percurso de um raio luminoso, o princípio de 
Fermat do tempo mínimo tem de prever o mesmo percurso, tal como determinado para a direcção original 
da propagação da luz. Generalizando, podemos então dizer que, qualquer raio luminoso de um sistema 
óptico que sofra uma inversão no seu sentido de propagação, percorrerá o mesmo percurso agora em 
sentido contrário. Este é o princípio de reversibilidade que é muito útil em algumas aplicações ópticas. 
 
 

1.6 Reflexão em Espelhos Planos 
 
A formação de imagens em espelhos planos é o caso mais simples da formação de imagens em sistemas 
ópticos. Considere-se a reflexão especular de um único raio de luz OP por um plano xy (ver figura 1-11).  

Da lei da reflexão, o raio reflectido PQ permanece no plano de incidência fazendo um ângulo com 
a normal a P igual ao ângulo de incidência. Se o percurso OPQ for descrito em coordenadas x, y e z, a 
direcção do raio OP é alterado pela reflexão só ao longo da direcção z, resultando na inversão da 
componente z. Se a direcção do raio incidente for descrita pelo vector unitário ( )zyx ,,1 =r , então por 

reflexão vamos ter que ( ) ( )zyxzyx −=→= ,,,, 21 rr  
 z 

y
 

x

O

P 

Q 

r1 

r2 

 
Figura 1- 11 Geometria de um raio reflectido por um plano. 
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Da mesma forma se um raio incidente for reflectido sequencialmente nos três planos coordenados, 
tal como apresentado esquematicamente na figura 1-12, o resultado será então 

( ) ( )zyxzyx −−−=→= ,,,, 21 rr , e o raio reflectido retorna precisamente paralelo à direcção do raio 
incidente. 

 z 

y
 

x  
Figura 1- 12 Geometria de um raio reflectido pelos três planos coordenados. 

 
 

A formação da imagem num espelho plano é ilustrada na figura 1-13. Os raios de luz provenientes 
de um ponto objecto S (por exemplo uma fonte de luz) incidem num espelho plano, sendo reflectidos por 
este de acordo com a lei da reflexão. Da figura 1-13 podemos ver que os triângulos SNP e S’NP são 
iguais e que todos os raios reflectidos parecem ter origem no ponto imagem S’, que se encontra no 
prolongamento da linha SN a uma profundidade tal que a distância imagem S’N é igual à distância 
objecto SN. O olho observa um ponto imagem em S’ exactamente da mesma forma que veria um ponto 
objecto real que estivesse colocado nesse local. Como nenhum dos raios luminosos atravessa o espelho 
passando para a sua superfície posterior, diz-se desta imagem que é uma imagem virtual. A imagem S’ 
não pode ser projectada num alvo como no caso de uma imagem real. 

 
 

S 

S’ 

N P 

 
Figura 1- 13 Formação da imagem num espelho plano. 

 
 

No caso de objectos extensos, todos os pontos desses objectos (seta na figura 1-14) formam 
pontos semelhantes através de um plano. Cada ponto objecto tem o seu ponto imagem ao longo da 
normal que faz com a superfície do espelho, à mesma distância que o objecto estiver do espelho, mas do 
lado oposto. De notar que a posição da imagem é independente da posição do olho do observador. Para 
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além disso a dimensão da imagem é igual à dimensão do objecto, donde para espelhos planos a 
ampliação é unitária. 

 
 

 
Figura 1- 14 Formação da imagem de uma seta por um espelho plano. 

 
 

Por outro lado, uma mão direita aparece no espelho como uma mão esquerda. O processo que 
transforma um sistema de coordenadas direito, no espaço objecto, num sistema esquerdo, no espaço 
imagem, tem o nome de reversão.  

Quando o espelho não se situa directamente abaixo do objecto, o espelho plano pode ter se ser 
virtualmente expandido para determinar a posição da imagem, tal como é observada por um olho 
posicionado de forma a receber os raios reflectidos originários do objecto (figura 1-15). 

 

 
Figura 1- 15 Formação da imagem num espelho plano (inversão). 

 
 

1.7 Reflexão em Superfícies Esféricas 
 
Os espelhos esféricos podem ser côncavos ou convexos relativamente a um objecto, dependendo se o 
centro de curvatura se encontrar do mesmo lado ou do lado oposto à superfície de reflexão (ver figura 1-
16). 

Para analisar a reflexão dos raios luminosos numa superfície esférica, devemos estabelecer certas 
definições e convenções de sinais. O centro de curvatura C é o centro da superfície esférica (ver figura 1-
16) e o ponto V é o vértice da calote esférica. A distância entre o ponto V e o objecto designa-se distância 
objecto e a distância entre o ponto V à imagem designa-se distância imagem. O raio de curvatura é a 
distância entre o centro de curvatura do espelho e um ponto da superfície do espelho. A linha que passa 
por V e C designa-se eixo principal.  
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C V 

R 

(a)   

C V 

R 

(b)  
Figura 1- 16 (a) Espelho concavo e (b) espelho convexo, onde C, R e V representam o centro de curvatura, o 
raio de curvatura e o vértice do espelho, respectivamente. 
 
 

Existem várias convenções de sinais e cada um pode estabelecer uma nova convenção de sinais, 
desde que seja coerente e com alguma lógica. As expressões que permitem calcular e caracterizar 
completamente o sistema óptico dependem das convenções de sinais. Assim, torna-se importante 
conhecer as convenções de sinais mais utilizadas nos vários livros de óptica. 
 

1.7.1 Exemplos de convenções de sinais 
 
Regra geral, em todas as convenções de sinais, é assumido que a luz se propaga da esquerda para a 
direita. Vamos apresentar a seguir três convenções de sinais muito utilizadas em óptica. 
 

 

C V 

r 

u 
v 

Luz 

 
Figura 1- 17 Trajectória de um raio reflectido num espelho convexo esférico. A vermelho está indicada a 
imagem formada da seta a negro pelo espelho convexo. 
 
1ª Convenção 
 

1. A distância objecto (u) é positiva quando o objecto se encontra à esquerda do vértice, 
correspondendo a um objecto real. Quando o objecto se encontra à direita do vértice a distância 
objecto é negativa correspondendo a um objecto virtual. 

2. A distância imagem (v) é positiva quando a imagem se encontra à esquerda do vértice, 
correspondendo a uma imagem real. Quando a imagem se encontra à direita do vértice a 
distância imagem é negativa correspondendo a uma imagem virtual. 
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3. O raio de curvatura (r) é positivo quando o centro de curvatura C se encontra à direita do vértice, 
correspondendo a um espelho convexo, e é negativo quando o centro de curvatura C se 
encontra à esquerda do vértice, correspondendo a um espelho côncavo. 

4. A altura do objecto e da imagem são positivas quando o objecto e a imagem se encontram 
acima do eixo óptico, e são negativas quando o objecto e a imagem se encontram abaixo do 
eixo óptico. 

 
 
2ª Convenção 

 
1. Tendo em atenção o sentido de propagação da luz, todas as quantidades medidas no sentido da 

propagação da luz são positivas e todas as quantidades medidas no sentido contrário à 
propagação da luz são negativas. 

2. As distâncias objecto e imagem, distâncias focais e raios de curvatura são medidos a partir da 
lente, do espelho ou da superfície de trabalho. Todos os sinais são de acordo com o ponto 1. 

3. Os diagramas são em geral desenhados de modo a que a luz incidente provenha da esquerda 
para a direita. 

4. A distância vertical a partir do eixo óptico até um ponto acima deste é tomada como positiva e 
para um ponto abaixo do eixo é negativa. 

5. Os ângulos medidos na direcção contrária aos ponteiros do relógio são positivos. O ângulo entre 
um raio e o eixo óptico é medido a partir do raio em direcção ao eixo. 

 
 
3ª Convenção 

 
Desenhando um sistema de eixos cartesianos na superfície reflectora ou refractora, tal que a 

origem do sistema de eixos coincida com o vértice da superfície, V, teremos que:  
1. As distâncias imagem e objecto são positivas para a direita do vértice e negativas para a esquerda 

de V. 
2. O raio de curvatura é positivo quando o centro de curvatura C está à direita do vértice e negativo 

quando C está a direita de V.  
3. As dimensões verticais são positivas acima do eixo horizontal (eixo óptico) e negativas abaixo 

desse eixo. 
 
Neste livro vamos utilizar a 3ª convenção de sinais expressa na figura abaixo. 
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Figura 1- 18 Representação da convenção sinais utilizada. 

 
 

1.7.2 Símbolos 
 
Os símbolos para as quantidades mais importantes são os que se seguem: 

Índice de refracção - n 
Distância objecto - u 
Distância imagem - v 
Distância focal imagem - f 
Distância focal imagem - f’ 
Raio de curvatura - r 
Altura do objecto - h 
Altura da imagem - h’ 

As letras maiúsculas denotam a distância recíproca de uma distância, por exemplo: vV 1= e   

rR 1=  , fF 1= , etc. 
Números em subscrito identificam uma série de refracções ou reflexões sucessivas, por exemplo 

'
2h  denota a altura da imagem depois da segunda reflexão. 

 

1.7.3 Equação dos espelhos 
 
A equação que relaciona os pontos conjugados objecto e imagem com os parâmetros físicos de um 
espelho esférico deduz-se com a ajuda da figura 1-19.  

As distâncias objecto e imagem medidas a partir do vértice estão representados na figura 1-19 
pelas letras u e v, respectivamente. Pode estabelecer-se uma relação entre essas duas quantidades com 
base no raio de curvatura. Para isso vamos recorrer aos ângulos α, θ i, θ r e ϕ  representados na figura 1-
19. 
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Figura 1- 19 Espelho esférico côncavo. Focos conjugados. 

 
 

Como se sabe o seno e o co-seno podem ser desenvolvidos numa série de termos: 
 

L−+−=
!5!3

sin
53 ϕϕϕϕ  

L−+−=
!4!2

1cos
42 ϕϕϕ  

 
Considerando só o primeiro termo da série para o seno e o co-seno temos: 

 
ϕϕ ≅sin  

1cos ≅ϕ  
 

Esta aproximação chamada aproximação paraxial, é uma boa aproximação só para ângulos 
pequenos. Por exemplo para ângulos da ordem dos 10º, a aproximação apresenta um erro da ordem de 
1,5%. Esta aproximação introduz-nos na óptica de 1º ordem ou óptica Gaussiana (de Karl Gauss, que em 
1841 desenvolveu os fundamentos deste tópico). 

Da figura 1-19 podemos relacionar os ângulos α, θ i, θ r e ϕ  com base nos triângulos OAC e OAP. 
Assim temos que  

 
ααθαϕθ −=−= '2  e  ii .  

 
combinando as duas equações vem que '2 ααϕ += . Como para ângulos pequenos 
 

  tan   e    tan     ;tan
r
h

v
h

u
h

=≅=′≅′=≅ ϕϕαααα   

 
vem que   
 

v
h

u
h

r
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ou seja 
 

rvu
211

=+  

 
A equação anterior é válida para espelhos côncavos. No caso de espelhos convexos tem-se: 

 

rvu
211

−=+  

 
No entanto é possível através da convenção de sinais obter-se uma equação geral para o caso de 

espelhos esféricos, quer sejam côncavos quer sejam convexos. Como 0>r para espelhos convexos e 
0<r para espelhos côncavos a equação geral será 

 

rvu
211

=+  

 
Esta é a equação dos espelhos que é aplicável tanto a espelhos côncavos como a espelhos 

convexos. Se assumirmos o raio de curvatura infinito (como é o caso de espelhos planos) vem que 
vu −=  tal como já foi visto anteriormente quando se falou na formação da imagem em espelhos planos. 

O sinal negativo implica uma imagem virtual para um objecto real.  
 

1.7.4 Pontos focais de superfícies de reflexão esféricas 
 
Para superfícies de reflexão esféricas, resulta da equação dos espelhos esféricos que, para qualquer 
ponto objecto O existe uma ponto imagem O’ correspondente. A distância de O’ ao vértice da superfície 
de reflexão (espelho esférico), V, pode ser calculada através da equação dos espelhos conhecendo-se a 
distância objecto e o raio de curvatura do espelho. Como o percurso da luz é reversível, as posições dos 
pontos objecto e imagem são permutadas. Assim a luz vinda de O’, em sentido contrário, passará por O. 
Pares de pontos objectos e imagens tal como O e O’ são conhecidos como pontos conjugados.  
 Quando um objecto está no infinito, ou se encontra a uma distância infinita da superfície do 
espelho, a frente de onda é plana e os raios são paralelos ao eixo óptico. Nesse caso diz-se que o feixe 
de luz é colimado. Um feixe de luz colimado reflectido por um espelho esférico côncavo, converge para 
um ponto imagem real F’ (ponto focal imagem), enquanto que num espelho convexo a luz reflectida é 
divergente, parecendo emergir de um ponto imagem virtual F’. Em ambos os casos esta imagem, 
conjugada de um ponto objecto no infinito, é chamada de ponto focal imagem ou segundo foco principal 
da superfície e a sua distância ao vértice é chamada distância focal imagem ou segunda distância focal, f 
’. Em espelhos esféricos a posição do ponto focal objecto coincide com a posição do ponto focal imagem. 

Para espelhos côncavos, quando o objecto se situa no ponto focal objecto ou primeiro foco 
principal, a imagem formada pelo espelho está no infinito e a luz reflectida é paralela ao eixo óptico. Se o 
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objecto se mover para uma posição entre o foco objecto e o vértice do espelho, a luz reflectida torna-se 
divergente parecendo ter origem numa imagem virtual, situada atrás do espelho e a uma distância do 
espelho superior à distância a que se encontra o objecto do espelho. Para espelhos convexos, a luz 
reflectida é sempre divergente e portanto a imagem formada é sempre virtual. Quando o objecto está 
muito distante do espelho, a imagem situa-se no ponto focal imagem ou segundo foco principal, F’, e a 
distância a que está do vértice do espelho é a distância imagem, ou segunda distância focal, f ’. Quando a 
luz incidente é colimada a luz reflectida é divergente parecendo ter origem no ponto focal imagem ou 
segundo foco principal. Se a luz incidente convergir para o ponto focal objecto, F, a luz reflectida é 
colimada, donde a imagem está no infinito.  

Tal como referido acima, para um objecto no infinito os raios incidentes são paralelos. Nesse caso 
como ∞=u , da equação dos espelhos vem que 2rv =  (a distância imagem é definida como distância 
focal do espelho) e  

 

fvu
111

=+  

 
 

sendo que 
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Figura 1- 20 Pontos focais, distâncias focais, raios de curvatura, pontos imagem e objecto em superfícies 
de reflexão convexas. 
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Figura 1- 21 Pontos focais, distâncias focais e raios de curvatura em superfícies de reflexão concavas. 
 
 

1.7.5 Formação da imagem em espelhos esféricos 
 
A grande maioria dos objectos com que lidamos no dia a dia não são pontos mas objectos extensos. 
Considerando que um objecto extenso é constituído por um grande conjunto de pontos, só um ponto 
desses pontos está situado no eixo óptico estando todos os outros fora de eixo. A designação pontos não 
axiais é usada para descrever esses mesmos pontos. Assume-se que os pontos que constituem o objecto 
estão suficientemente perto do eixo óptico, para que a aproximação paraxial (ângulos pequenos) seja 
válida. Nos vários diagramas que serão apresentados as alturas dos objectos são exageradas para maior 
claridade e melhor compreensão do esquema óptico. 

Na figura 1-22 o objecto OP está colocado em frente de um espelho esférico côncavo. A posição 
da imagem O’P’ será determinada através da equação dos espelhos, ou então através do traçado de 
raios no diagrama se se conhecer a posição do ponto focal do espelho. Assim, a posição do ponto 
imagem P’ pode ser encontrada traçando simplesmente dois raios no diagrama, um raio com origem em 
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P dirigido ao centro de curvatura do espelho e outro raio também com origem em P paralelo ao eixo 
óptico. A imagem estará na intersecção dos raios reflectidos pelo espelho. 

Todos os raios originários do objecto que passem pelo centro de curvatura incidem no espelho 
segundo a normal à superfície. Como da lei da reflexão, os ângulos incidente e reflectido têm que ser 
iguais, então o raio originado pela reflexão no espelho é reflectido também segundo a normal à superfície, 
donde obrigatoriamente o raio reflectido e o raio incidente têm a mesma direcção mas sentidos opostos. 
Por outro lado todos os raios paralelos ao eixo óptico (os quais podem ser considerados como 
provenientes do infinito), tal como visto acima, passam pelo ponto focal do espelho. 
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Figura 1- 22 Traçado de raios para formação da imagem de um objecto real em espelhos esféricos côncavos.  
 
 

Na figura 1-23 apresenta-se a formação de imagens em espelhos esféricos côncavos e convexos. 
Nos espelhos convexos as imagens formadas são sempre direitas, menores e virtuais, nos espelhos 
côncavos as imagens podem ser reais ou virtuais, maiores ou menores, direitas ou invertidas. 

Para caracterizar completamente uma imagem temos que conhecer a sua posição, para saber se 
é uma imagem real ou virtual, a sua orientação, para saber se é direita ou invertida e as suas dimensões, 
para saber se é maior ou menor do que o objecto que a originou. 
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Figura 1- 23 Formação da imagem para espelhos esféricos côncavos e convexos. 

 
 

Através do traçado de raios podemos geometricamente caracterizar a imagem, no entanto se 
quisermos uma resolução algébrica temos que recorrer à equação dos espelhos e a uma outra 
quantidade denominada ampliação lateral. A ampliação lateral é o módulo da razão entre a altura da 
imagem e a altura do objecto.  
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h
hm
′

=  

 

mas da figura 1-23 tira-se que
OP

POm 
′′

= . 

 
Por outro lado conforme se pode deduzir da figura uOP=θtan  e vPO ′′=′θtan  e que θθ ′= . 

Assim temos então que: 
 

u
v

u
vm  

tan
tan =

′
=

θ
θ  

 
tendo em atenção a convenção de sinais, a ampliação lateral é dada pela seguinte expressão válida para 
todos os tipos de espelhos: 

 

u
vm −=  

 
Do valor da ampliação lateral podemos concluir que: 

• Se for negativo indica uma imagem invertida relativamente ao objecto. 
• Se for positivo indica uma imagem direita relativamente ao objecto. 
• Se em módulo for superior à unidade indica uma imagem maior que o objecto. 
• Se em módulo for inferior à unidade indica uma imagem menor que o objecto. 
• Se em módulo for igual à unidade indica que a imagem tem a mesma dimensão do 

objecto. 
 

1.7.6 Curvatura e Vergência 
 

Uma forma muito útil de estudar a formação da imagem originada de um objecto é, através da 
alteração da curvatura das frentes de onda, à medida que divergem de um ponto objecto e convergem 
para um ponto imagem. As frentes de onda originadas numa fonte pontual consistem num invólucro 
esférico, que se torna cada vez menos curvo à medida que se vai propagando no espaço para pontos 
mais distantes (ver figura 1-24). A curvatura expressa-se normalmente numa unidade recíproca do metro 
que é a dioptria, cujo símbolo é a letra D.  

Uma frente de onda com 10 cm de raio tem uma curvatura de 1.01 , ou seja 10 D. Se a frente de 
onda é divergente, a partir de um ponto objecto, a sua curvatura é negativa (-10 D), se pelo contrário a 
frente de onda é convergente, em direcção a um ponto imagem, a sua curvatura é positiva (10 D). Esta 
escolha de sinais é consistente com a convenção se sinais adoptada para as distâncias objecto e 
imagem. Da figura 1-24 pode-se constatar que à medida que a distância r aumenta, a curvatura r1 da 
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frente de onda diminui de magnitude, aproximando-se de zero à medida que r se aproxima de infinito, 
sendo nesse caso a frente de onda uma onda plana. 

r = 2 cm 
r = 5 cm 

r = 10 cm 

r = 15 cm 

−50 D 
−20 D 

−10 D 
−6,7 D 

O 

 
Figura 1- 24 Diminuição do raio de curvatura com a distância. 

 
 

Retornando à equação dos espelhos e aplicando a noção de curvatura temos que, u1  é a 

curvatura da frente de onda à distância u da fonte pontual e v1  é a curvatura da frente de onda à 
distância v do ponto imagem. Definem-se estas curvaturas como vergências, sendo uU 1=  e vV 1= . 
Como o sentido da luz é invertido no momento da reflexão, o sinal da curvatura associado ao ponto 
imagem é também invertido. Assim, vV 1−= para o caso da reflexão. Deste modo 

 

V
r

U
r

VU =−=−
2   ou   2  

 
A segunda forma da equação é mais intuitiva, mostrando que a vergência inicial U da frente de 

onda no espelho é modificada pelo espelho para produzir a vergência final V no espelho. Esta 
modificação é devida à acção do espelho e é representada pelo termo r2− , denominado potência do 
espelho F. Assim podemos escrever que, 

 

r
FVFU 2     onde       −==+  

 
Esta última equação, expressa em termos de vergências e da potência do espelho, é equivalente à 

equação dos espelhos descrita na secção 1.7.3. Para a ampliação lateral temos 
 

V
U

V
U

v
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u
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−
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1
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1.8 Refracção em Superfícies Esféricas 
 

1.8.1 Introdução: convenção de sinais e símbolos  
 
Vamos relembrar mais uma vez a convenção de sinais a ser utilizada na refracção da luz em superfícies 
esféricas. Desenhando um sistema de eixos cartesianos na superfície reflectora ou refractora, tal que a 
origem do sistema de eixos coincida com o vértice da superfície, V, teremos:  

1. As distâncias imagem e objecto positivas para a direita do vértice V e negativas para a 
esquerda de V. 

2. O raio de curvatura positivo quando o centro de curvatura C está à direita do vértice e 
negativo quando C está a direita de V.  

3. As dimensões verticais positivas acima do eixo horizontal (eixo óptico) e negativas abaixo 
desse eixo. 

 

X 

Y 

Superfície 

> 0 

> 0 

< 0 

< 0 

 
Figura 1- 25 Representação da convenção de sinais. 

 
 
quanto aos símbolos utilizados eles são: 

Índice de refracção - n 
Distância objecto - u 
Distância imagem - v 

Distância focal objecto - f 
Distância focal imagem – f ’ 
Altura do objecto - h 

Altura do objecto – h’ 
Raio de curvatura- r 

 
 
As letras maiúsculas denotam a distância recíproca de uma distância, por exemplo: vV 1= e   

rR 1=  , etc. 
Números em subscrito identificam uma série de refracções ou reflexões sucessivas, por exemplo 

2'h  denota a altura da imagem depois da segunda refracção ou reflexão. 
 

1.8.2 A Equação das Superfícies de Refracção 
 

Nesta secção vamos tratar do processo de refracção em superfícies esféricas (também chamadas 
de dioptros esféricos). Para isso vamos observar o que se passa numa superfície côncava (figura 1-26). 
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Na figura apresentam-se dois raios que partem do ponto objecto O. Um é um raio axial normal à 
superfície no seu vértice e o segundo um raio não axial dirigido para o ponto P. O raio axial refracta-se 
sem mudar de direcção, enquanto que o raio não axial refracta-se alterando a sua direcção de incidência 
de acordo com a lei de Snell vista nas secções 1.2.3, 1.3 e 1.4. 

C 

h 

θ2 
P 

V 

θ1 θ2 

ϕ α’ α
Q
V

O I 

v 
u 

r 

n1 

n2 

 
Figura 1- 26 Refracção numa superfície esférica concava. 

 
 

Da figura 1-26 observa-se que os dois raios refractados são divergentes a partir da superfície, mas 
que os seus prolongamentos intersectam-se no ponto I. O ângulo externo do triângulo CPO é igual a 

ϕθα += 1 , enquanto que para o triângulo CPI o ângulo externo é dado por ϕθα += 2' . Retornando à 
lei de Snell  

 

2211 sinsin θθ nn =  
 

e substituindo os ângulos 1θ  e 2θ  pelas expressões obtidas a partir dos ângulos externos dos triângulos 
CPO e CPI temos: 
 

( ) ( )ϕαϕα −=− 'sinsin 21 nn  
 

mas da aproximação paraxial temos 
 
 ( ) ( )ϕαϕα −=− '21 nn  
 

e como  tan  e   ,'tan   ,tan
r
h

v
h

u
h

≈≈≈ ϕαα vem 
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Da convenção de sinais como todas as quantidades envolvidas (u, v e r) são negativas então a 
equação anterior fica 

 

r
nn

u
n

v
n 1212 −

=−  

 
a qual pode ser aplicada tanto a superfícies côncavas como convexas. Quando a superfície é plana 

∞=r  e  
 

 u
n
nv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1

2  

 
Para um objecto real a distância objecto u é negativa e da equação anterior também a distância 

imagem, v, é negativa. Assim, a imagem encontra-se à esquerda da superfície de refracção sendo 
portanto uma imagem virtual.  

 

u v 

h 

h’ 
C I 

O 

n1 n2 

θ 1 

θ 2 

 
Figura 1- 27 Refracção numa superfície esférica convexa. 

 
 
A ampliação lateral de um objecto extenso é determinada pela razão entre a altura do objecto e a 

altura da imagem, isto é, 
 

hhm ′=  
 

mas como 221121 sinsin  e  '   , θθθθ nn
v
h

u
h

=== , vem que 

 

 
un
vn

m
2

1=  

 
Como da convenção de sinais utilizada, u é negativo e v é positivo, a ampliação lateral é negativa, 

indicando uma inversão da imagem, em acordo com o esquema da figura 1-27. Esta equação da 
ampliação lateral é geral podendo ser utilizada tanto em superfícies côncavas como em superfícies 
convexas. 
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Para superfícies planas como ( ) 1  então   , 12 +== munnv , indicando que a imagem formada 
por uma superfície de refracção plana, tem a mesma dimensão e a mesma orientação do objecto (real, 
direita e igual ao objecto). 

 
 

1.8.3 Formação da imagem em dioptros esféricos 
 
Tal como na secção 1.7.5 vamos assumir que os pontos que constituem o objecto estão suficientemente 
perto do eixo óptico para que a aproximação paraxial (ângulos pequenos) seja válida e que nos vários 
diagramas que serão apresentados, as alturas dos objectos são exageradas para maior claridade e 
melhor compreensão do esquema óptico. 

Na figura 1-28 o objecto OP está colocado em frente de uma superfície de refracção esférica 
convexa. A posição da imagem O’P’ será determinada analiticamente através da equação dos dioptros 
esféricos ou então geometricamente através do traçado de raios no diagrama. Para isso é necessário 
conhecer-se a posição dos pontos focais objecto e imagem da superfície de refracção, 

 

r
nn

u
n

v
n 1212 −

=−  

 
Se a imagem do ponto F (foco objecto) se formar no infinito então v = ∞ e  
 

 
r

nn
u
nn 1212 −

=−
∞

  

 
Esta distância particular da superfície ao objecto é, por definição, a distância focal objecto, isto é, 

fu ≡ , logo: 
 

 r
nn

nf
21

1

−
= . 

   
De um modo análogo, o foco imagem é o ponto F ’ onde se forma a imagem de um objecto no 

infinito (u = ∞), isto é, 
 

r
nnn

v
n 1212 −

=
∞

− . 

 
Esta distância da superfície à imagem é a distância focal imagem (f ’) que por definição é igual à 

distância imagem (v). 
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r
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A posição do ponto imagem P’ pode ser encontrada traçando simplesmente dois raios no 

diagrama. Normalmente os raios escolhidos são: (1) raio com origem em P e que passa pelo ponto focal 
objecto; (2) raio que é paralelo ao eixo óptico e (3) raio que tendo origem em P passa pelo centro de 
curvatura da superfície de refracção.  

Todos os raios originários do objecto que passem pelo centro de curvatura incidem na superfície 
de refracção segundo a normal à superfície. Da lei de Snell os raios que incidam segundo a normal à 
superfície no ponto de incidência não sofrem nenhuma alteração de direcção (não são desviados). Por 
outro lado todos os raios que não incidam normalmente à superfície sofrem os efeitos da refracção, isto é, 
são desviados da sua direcção original. Assim, os raios provenientes do objecto que sejam paralelos ao 
eixo óptico (provenientes do infinito) são refractados passando pelo ponto focal imagem e os raios que 
passam pelo ponto focal objecto são refractados ficando paralelos ao eixo óptico (imagem no infinito). 

A imagem O´P´do objecto OP formar-se-á na intersecção dos raios que são refractados para o 
interior da superfície de refracção. Um exemplo da formação da imagem em superfícies de refracção 
esféricas é apresentado na figura 1-28, onde se podem visualizar os três raios descriminados acima. 

 

u v 
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h’ 
O’ 

O 

n1 n2 

F’ 

F V 
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(1) 

(2) 
(3) 

 
Figura 1- 28 Formação da imagem em dioptros esféricos. 

 
 

1.8.4 Vergências na Refracção 
 
O problema da refracção em superfícies esféricas pode ser também descrito através das curvaturas da 
frente de onda. Suponhamos um feixe luminoso a propagar-se da esquerda para a direita de um meio de 
índice de refracção n1 para um meio de índice de refracção n2 separados por uma interface esférica de 
raio r. Define-se unU 1= , como a vergência das frentes de onda originadas pela fonte e que chegam à 
superfície esférica. Do mesmo define-se vnV 2= , como a vergência das frentes de onda na superfície 
esférica associadas à formação da imagem. Assim, 
 

 VFUFUV
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com 
 

 
r

nnF 12 −=  

 
A curvatura U da frente de onda objecto é modificada pela potência da superfície esférica para 

produzir a curvatura V da frente de onda imagem. Quanto à ampliação lateral, em termos de vergências, 
é expressa através da equação: 

 

 ( )
( ) V

U
vn
un

un
vn

m ===
2

1

2

1  

 
 

1.9 Lentes Finas 
 
Uma lente é um componente óptico resultante da conjugação de duas superfícies esféricas de refracção. 
Também se pode afirmar que uma lente é um elemento óptico que actua por refracção, introduzindo 
descontinuidades no meio em que a luz se propaga inicialmente e que reconfigura a distribuição da 
energia transmitida, independentemente da frequência da luz. 

A forma de uma lente esférica depende do tipo de superfícies de refracção utilizadas. Existem 
vários tipos de lentes esféricas, resultado de superfícies de refracção convexas, côncavas, planas e 
convexas, planas e côncavas, côncavas e convexas, etc., (figura 1-29). A designação que atribuímos a 
cada tipo de lente estará de acordo com as duas superfícies que a compõem, isto é, existem lentes 
biconvexas, bicôncavas, plano-convexas, plano-côncavas e os meniscos positivos e negativos. Os 
meniscos são lentes formadas por uma superfície convexa associada a uma superfície côncava. No 
entanto todas as lentes esféricas só podem ser de dois tipos: convergentes ou divergentes (positivas ou 
negativas).  

A maioria das lentes tem duas ou mais interfaces de refracção e no mínimo uma dessas interfaces 
é curva. De um modo geral as superfícies encontram-se centradas no eixo óptico. Essas superfícies são 
na sua maioria segmentos esféricos frequentemente revestidos com filmes dieléctricos finos para 
controlar as suas propriedades de transmissão. 

Uma lente que consista só de um elemento (duas superfícies de refracção) é uma lente simples, a 
presença de mais de um elemento torna a lente composta. Para além disso uma lente também é 
classificada como fina ou espessa, dependendo se a sua espessura pode ser ou não desprezada, 
respectivamente.   
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1 2 3 4 5 6  
1 – Lente biconvexa 
2 – Lente bicôncava 
3 – Lente plano-convexa 

4 – Lente plano-côncava 
5 – Menisco positivo 
6 – Menisco negativo 

Figura 1- 29 Representação das diversas formas de lentes esféricas finas. 
 
 

Nesta secção vamos admitir que podemos desprezar a espessura da lente quando comparada 
com as distâncias objecto e imagem, isto é, vamos admitir que as lentes são finas. Como uma lente é 
formada por duas superfícies de refracção, para obtermos uma equação que caracterize a lente vamos 
ter de aplicar duas vezes a equação das superfícies de refracção esféricas ou equação dos dioptros 
esféricos (figura 1-30).  

 
 n1 n1 n2 

r1 r2 

1ª sup. 2ª sup. 

 
Figura 1- 30 Representação dos índices de refracção e raios de curvatura dos dioptros de uma lente. 

 
 
Assim, para a 1ª superfície de refracção com raio de curvatura 1r  temos: 
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e para a 2ª superfície de refracção, de raio 2r  temos: 
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tendo-se assumido que a lente está imersa num meio de índice de refracção 1n .  

Da figura 1-31 podemos ver que  



  Óptica Geométrica 

- 42 - 

 tvu −= 12  
 
onde t é a espessura da lente. Se admitirmos que a lente da figura 1.31 é uma lente fina, não entramos 
em consideração com a espessura da lente (espessura nula) e então 12 vu = . Substituindo na equação 
relativa à 2ª superfície de refracção vem: 
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donde, 
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Figura 1- 31 Formação da imagem de um objecto (seta) por uma lente espessa. 

 
 
Substituindo a expressão anterior na equação relativa à 1ª superfície de refracção vem: 
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onde 1u  é a distância objecto original e 2v  é a distância imagem final. Como estamos a considerar uma 
lente fina podemos retirar os sub-índices das distâncias objecto e imagem e simplificar a equação 
anterior. Então temos 
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Como a distância focal de uma lente fina é definida como a distância imagem para um objecto no 

infinito, isto é, 'fv = e 01 =u , temos  
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A distância focal pode também ser definida como a distância objecto para um objecto no infinito, 

onde fu = e 01 =v , obtendo-se a distância f (conforme se pode observar na figura 1-33 mais adiante). 
A distância focal f é chamada distância focal objecto ou primeira distância focal e a distância focal f ‘ é a 
distância focal imagem ou segunda distância focal. Para lentes finas ff ′= . 

Para as lentes convergentes (figura 1-32 (a)) os raios que partem do ponto focal objecto (a 
tracejado) depois de atravessarem a lente ficam paralelos ao eixo óptico, enquanto que os raios paralelos 
ao eixo óptico (a cheio) depois de atravessarem a lente convergem para o ponto focal imagem. 

Para as lentes divergentes (figura 1-32 (b)) os raios paralelos ao eixo óptico (a cheio) depois de 
atravessarem a lente divergem de tal forma que os seus prolongamentos se cruzem no ponto focal 
objecto, enquanto que os raios que incidam na lente de tal forma que os seus prolongamentos se cruzem 
no ponto focal imagem (a tracejado) depois de atravessarem a lente tornam-se paralelos ao eixo óptico.    

A equação anterior é chamada equação dos fabricantes de lentes, porque dá o valor da magnitude 
da distância focal (logo também a potência) de uma lente fabricada com um determinado índice de 
refracção e raios de curvatura a ser utilizada num determinado meio 1n . 

 Na grande maioria dos casos o meio é o ar donde 11 =n . Em termos da distância focal a 
equação das lentes finas vem: 
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F’ 

f >0 

F 

(a)  

F 

f <0 

F’ 

(b)  
Figura 1- 32 Representação da distância focal objecto e imagem para lentes convergentes (a) e divergentes 
(b). 
 
 

Nas lentes finas como desprezamos a sua espessura (espessura nula), a representação é feita 
através de uma linha vertical em que as arestas sugerem a forma da lente. Para lentes convergentes ou 
positivas as arestas têm a forma de setas a apontar para o exterior, enquanto que para lentes divergentes 
ou negativas as arestas têm a forma de setas a apontar para o centro da linha (figura 1-33). 

Tal como visto na secção 1.8.3, também nas lentes finas o traçado de raios para determinar a 
posição da imagem é feito com base em três raios: um raio paralelo ao eixo óptico que depois de 
atravessar a lente passa pelo ponto focal imagem, um raio que passa pelo ponto focal objecto e que 
depois da lente sai paralelo ao eixo óptico e um raio dirigido ao centro da lente que não sofre alteração de 
direcção. Os traçados de raios para lentes convergentes e divergentes podem ser vistos na figura 1-33 no 
caso de um objecto real e na figura 1.34 para um objecto virtual.  
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Figura 1- 33 Traçado de raios na formação da imagem em lentes finas convergentes e divergentes para 
objectos reais. 
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Figura 1- 34 Traçado de raios na formação da imagem em lentes finas convergentes para objectos virtuais. 
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Observando as figuras anteriores podemos concluir que  
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donde a ampliação lateral vem 
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1.9.1 Sistemas de lentes finas 
 
A maior parte dos instrumentos ópticos são constituídos por mais de uma lente e quase todos têm os 
seus componentes (lentes) centrados num único eixo (eixo óptico). Isto quer dizer que a posição e 
tamanho da imagem final formada pelo sistema óptico pode ser determinada através da equação das 
lentes finas ou através do traçado de raios para cada lente. A imagem formada por uma lente torna-se o 
objecto (real ou virtual) para a lente a seguir e assim sucessivamente para cada lente que constitua o 
sistema (figura 1-35). Para cada uma das lentes temos, respectivamente, 
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Se as lentes estiverem em contacto (sem espaçamento entre elas) 12 vu = , 23 vu = , etc. No 

caso de duas lentes finas em contacto teremos 
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No caso geral para N lentes finas em contacto virá: 
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+++=− L  
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Neq fffff
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Sendo eqf a distância focal equivalente do conjunto de lentes.  
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Figura 1- 35 Formação da imagem de um objecto por um sistema de lentes finas convergentes. 

 
 

1.9.2 Vergências para lentes finas 
 
Para chegar à equação da vergência para as lentes finas, podemos fazer uso do facto de que a potência 
de uma lente como um todo, ser a soma das potências das duas superfícies. Se a lente é fina, estamos a 
admitir que a curvatura da frente de onda não varia apreciavelmente na espessura dessa lente. Assim e 
tendo em conta as equações da secção 1.8.4, podemos escrever que a vergência objecto na 1ª superfície, 
mais as potências das 1ª e 2ª superfícies são iguais à vergência imagem na segunda superfície, isto é, 
 
 VPPU =++ 21  
 
 Vamos assumir o caso mais geral em que o espaço objecto tem um índice de refracção n1, a lente 
um índice de refracção n2 e o espaço imagem um índice de refracção n3. Nesta situação teremos 
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No entanto regra geral a lente está inserida num único meio, ou seja, 31 nn = e então a potência 

da lente equivalente será dada por 
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Da secção 1.9 sabemos que ⎟⎟
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 que é a equação dos fabricantes de lentes. Das 

últimas duas equações resulta que  
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Quanto à ampliação lateral temos 
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Quando a lente estiver inserida num só meio vem simplesmente VUm = . 
 

1.9.3 Equação Newtoniana para lentes finas 
 
Quando as distâncias objecto e imagem são medidas relativamente aos pontos focais da lente (ponto 
focal objecto e ponto focal imagem), temos que obter uma forma alternativa para a equação das lentes 
finas, chamada forma Newtoniana. 
 

 

h 

h’ F 
F’ 

x x’ f f 

h’ B 
C 

A 

D 

D 

E 

G 

 
Figura 1- 36 Representação das várias distâncias utilizadas na equação Newtoniana das lentes finas. 
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Como podemos ver da figura 1-36, os triângulos ABF e FCD têm um ângulo em comum, resultando 

que  
f
h

x
h ′
= . 

 
Do mesmo modo para os triângulos DCF’ e F’EG vem 
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Temos então que 
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Como a ampliação lateral é em valor absoluto, a razão entre o comprimento da imagem 

relativamente ao comprimento do objecto, vem que 
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Como na figura 1-36 a imagem está invertida, então a ampliação lateral tem de ser negativa, 

donde,  
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que é a equação Newtoniana para as lentes finas. 
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Capítulo 2  
 

Superfícies Ópticas Não Esféricas 
 
 
 

2.1 Introdução 
 
Tudo o que foi tratado até aqui foi relativo a superfícies esféricas. Mesmo as superfícies planas podem 
ser consideradas esféricas com raio de curvatura infinito. As superfícies esféricas são muito comuns em 
óptica, uma vez que são mais fáceis de serem produzidas. As superfícies não esféricas são mais difíceis 
de serem produzidas. As superfícies não esféricas podem ter várias formas as quais serão descritas 
neste capítulo. 

As lentes esféricas são caracterizadas por ter simetria esférica, isto é, se a lente for rodada de um 
ângulo arbitrário em torno do seu eixo de simetria não apresenta nenhuma alteração. Como a orientação 
das curvaturas da superfície não mudou, as suas características ópticas permanecem inalteradas. No 
entanto se o raio de curvatura de uma ou de ambas as superfícies variar ao longo de diferentes secções 
transversais da lente, ela perde a sua simetria esférica. Em particular as lentes cilíndricas têm uma forma 
semelhante a um cilindro cortado ao meio, em que uma superfície é plana e a outra tem uma secção 
transversal semi-circular. 

 Uma lente deste tipo tem propriedades de focagem assimétricas. Enquanto que uma lente circular 
produz um ponto imagem de um ponto objecto, uma lente cilíndrica produz uma linha imagem de um 
ponto objecto. Devido às suas propriedades, as lentes esféricas dizem-se estigmáticas e as lentes 
cilíndricas dizem-se astigmáticas. Como é evidente, tais lentes são úteis na correcção do defeito de visão 
chamado astigmatismo. 
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2.2 Superfícies toroidais e cilíndricas 
 
Se uma lente em forma de menisco for comprimida verticalmente, a superfície é distorcida da forma 
esférica. Vai existir um aumento na curvatura na direcção vertical mas ao mesmo tempo um aplanamento 
na direcção horizontal. A superfície fica então com dois eixos de curvatura diferentes, correspondentes 
aos eixos de curvatura máxima e mínima perpendiculares entre si. Este tipo de superfície é chamada 
superfície toroidal (figura 2-1). 
 

 

X 

Y 

Z 

 
Figura 2- 1 Superfície esférica versus superfície toriodal. Representação do eixo vertical e horizontal de uma 
lente toroidal. 
 
 

Uma superfície cilíndrica é uma superfície onde um dos eixos não tem curvatura (é plano). Na 
figura 2-2 apresentam-se superfícies cilíndricas e superfícies toroidais. 

 

r X 

r Z 

r X 

r Z 

Localização do centro de r Z  
Figura 2- 2 Representação de superfícies cilíndricas, versus superfícies toroidais. 

 
 

As orientações que contêm as curvaturas máximas são chamadas meridianos principais. No caso 
das lentes cilíndricas o eixo do cilindro é paralelo ao meridiano principal o qual tem curvatura nula. Este 
meridiano é conhecido como meridiano do eixo ou simplesmente eixo do cilindro. O meridiano 
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perpendicular ao eixo do cilindro, que é o meridiano principal contendo a curvatura e portanto a potência 
da lente, é conhecido como meridiano de potência ou contra-eixo. (figura 2-3).  

 
 

Eixo do cilindro 

Eixo da potência 

Eixo do cilindro 

Eixo da potência 

 
Figura 2- 3 Representação dos eixos do cilindro e da potência em superfícies cilíndricas convergentes e 
divergentes. 
 
 

Se partíssemos os cilindros segundo os dois eixos, teríamos o que se apresenta na figura 2-4. 
Observando as figuras anteriores podemos então concluir então que a potência está sempre no 

eixo da potência ou contra-eixo e que no eixo do cilindro nunca existe potência. Por isso ao rodarmos 
uma lente cilíndrica a imagem deforma-se quando passamos de um meridiano a outro. 
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Figura 2- 4 Representação em pormenor dos eixos do cilindro e da potência em superfícies cilíndricas 
convergentes e divergentes. 
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Cada raio de luz que incida numa lente cilíndrica só sofre refracção no meridiano de potência. O 
resultado deste processo de refracção, é que a imagem de um ponto objecto é uma linha paralela ao eixo 
do cilindro, isto é, paralela ao meridiano de potência nula da lente, figura 2-5. 

 
 

Linha vertical 
imagem (real) Eixo do 

cilindro 

 

Linha vertical 
imagem (virtual) 

Eixo do 
cilindro 

 
Figura 2- 5 Esquema da refracção em lentes cilíndricas convergentes e divergentes com a formação da 
imagem (real e virtual) de uma linha objecto no infinito. 
 
 

Para uma superfície toroidal os dois meridianos principais têm potência, ao contrário do que 
acontece nas superfícies cilíndricas. O resultado é a formação de duas linhas nos pontos focais imagem. 
Este mesmo efeito pode ser obtido através da composição de uma lente esférica com uma lente 
cilíndrica, ou então através da composição de duas lentes cilíndricas com os eixos dos dois cilindros 
perpendiculares (chamado cilindros cruzados), figura 2-6. 
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Figura 2- 6 Construção de lentes toroidais através da composição de uma lente esférica com uma lente 
cilíndrica, ou então através da composição de duas lentes cilíndricas com os eixos dos dois cilindros 
perpendiculares (chamado cilindros cruzados). 
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No caso da combinação de duas lentes cilíndricas, como cada uma das lentes não tem potência 
no meridiano de potência da outra lente as duas linhas imagem estão localizadas independentemente 
uma da outra. Qualquer variação na potência de uma das lentes cilíndricas não afectará a localização da 
outra linha imagem. Os valores das potências nos meridianos principais determinam as distâncias onde 
as linhas imagem são formadas. Embora a superfície toroidal tenha curvaturas diferentes em meridianos 
oblíquos ela não tem potência efectiva a não ser nos meridianos principais.   

 
 

2.3 Lentes oftálmicas  
 
A óptica oftálmica é a que mais utiliza superfícies toroidais e a que desenvolveu uma terminologia própria. 
O termo tórica deve ser usado para lentes e não para superfícies. As superfícies toroidais são aquelas 
para as quais as curvaturas nos seus meridianos principais são arcos de círculo. As superfícies 
apresentadas na figura 2-3 satisfazem esta definição, ao passo que as superfícies distorcidas da figura   
2-1 não podem ser consideradas como toroidais. Embora o olho humano raramente apresente 
astigmatismo, com a forma simétrica de uma superfície toroidal ou cilíndrica, a visão de muitas pessoas 
pode ser melhorada com a utilização de lentes com uma componente cilíndrica, que corrijam a 
componente cilíndrica existente nos olhos.  

Um feixe de raios luminosos procedentes de um ponto objecto axial, que atravesse uma lente 
astigmática de potência positiva em ambos os meridianos, não vai formar um ponto imagem. Pelo 
contrário, vão existir duas posições, ou dois pontos de focagem, correspondentes aos pontos focais dos 
dois meridianos principais onde os raios luminosos se cruzam, obtendo-se duas linhas imagem a partir de 
um ponto objecto axial (figura 2-7). Se a abertura da lente é circular, a secção transversal do feixe 
emergente a partir da lente astigmática, é ao princípio uma elipse com o seu eixo maior paralelo ao eixo 
do cilindro, diminuindo de largura até se tornar uma linha paralela ao eixo do cilindro em B’α. A seguir a 
secção transversal do feixe torna-se circular em B’Z (círculo de confusão mínima), retornando a uma 
elipse com eixo maior perpendicular ao eixo do cilindro a partir desse ponto e daí degenerando para uma 
linha perpendicular ao eixo do cilindro em B’β. Na posição correspondente ao círculo de confusão mínima, 
o feixe de luz apresenta a menor secção transversal. As propriedades de um feixe astigmático foi 
estudado por Sturm, matemático do séc. XIX, donde à forma do feixe apresentado na figura 2-7 chamar-
se conoide de Sturm e à distância entre as linhas focais chamar-se intervalo de Sturm. 
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Figura 2- 7 Feixe astigmático de Sturn (intervalo de Sturn). Representação das secções e linhas de focagem 
numa lente astigmática. 
 

2.3.1 Lentes cilíndricas 
 
Para se corrigirem os olhos que apresentam miopia utilizam-se lentes oftálmicas de potência 

negativa. Pode então acontecer que algumas lentes oftálmicas apresentem potência positiva num dos 
meridianos principais e potência negativa no outro meridiano principal (que está desfasado de 90º), 
potência positiva nos dois meridianos principais, ou ainda potência negativa nos dois meridianos 
principais. 

A posição das linhas focais é encontrada através da aplicação da expressão dos focos conjugados 
a cada um dos meridianos em particular. Em termos de vergências a expressão dos focos conjugados é 
dada por FUV += , onde V é a vergência imagem, U a vergência objecto e F a potência do meridiano em 
questão. Para se determinar as dimensões das linhas focais e a posição do círculo de confusão mínima, 
é conveniente representar as secções do feixe nos dois meridianos principais num só plano (figura 2-8). 
As dimensões das duas linhas focais, em termos de vergências, são dadas por: 
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onde I1I1’ corresponde à dimensão da 1ª linha focal, I2I2’ corresponde à dimensão da 2ª linha focal, DD’ 
corresponde ao diâmetro da lente, V1’ corresponde à vergência imagem para a 1ª linha focal e V2’ 

corresponde à vergência imagem para a 2ª linha focal. 
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Figura 2- 8 Representação do feixe astigmático num plano. Linhas focais e posição do círculo de confusão 
mínima numa lente astigmática. 

 
 
A posição e o diâmetro do círculo de confusão mínima são dadas pelas expressões apresentadas 

abaixo, onde DD’ corresponde ao diâmetro da lente, V1’ corresponde à vergência imagem para a 1ª linha 
focal, V2’ corresponde à vergência imagem para a 2ª linha focal, VC’ corresponde à vergência imagem 
para o círculo de confusão mínima e z é o diâmetro do círculo de confusão mínima. 
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A natureza da imagem formada por uma lente tórica com meridianos principais na vertical e na 

horizontal pode ser vista na figura 2-9.  
 

 
Figura 2- 9 Representação das imagens observadas nas linhas focais vertical e horizontal. 

 
 

De notar que as linhas que aparecem focadas em cada uma das imagens são perpendiculares aos 
meridianos que as geram (meridianos que focam os raios no ponto onde se forma a linha). Assim, as 
linhas produzidas são sempre perpendiculares aos meridianos que as geram (ver figura 2-10). Para uma 
lente cilíndrica a potência vem dada por 

 

r
nnF 12 −=  
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onde F é a potência da lente cilíndrica, n1 e n2 são os índices de refracção do meio e da lente, 
respectivamente e r é o raio de curvatura do meridiano da potência.  
 

 

Eixo do cilindro 
(potência nula) 

Linha 
imagem 

Eixo da 
potência 

 
Figura 2- 10 Visualização da perpendicularidade entre as linhas focais produzidas e os meridianos que as 
geram.  
 
 

Até aqui vimos lentes cilíndricas cujos eixos eram horizontais ou verticais. É claro que o eixo do 
cilindro pode ser um ângulo qualquer. Um olho com astigmatismo pode ter o eixo vertical, horizontal ou 
um ângulo entre os dois.  

De uma forma geral temos que saber determinar o efeito da combinação de duas lentes cilíndricas 
com eixos arbitrários, ou de uma lente esférica com uma lente cilíndrica. Duas lentes cilíndricas 
associadas (lente bicilíndrica) produzem o mesmo efeito que a combinação de uma lente esférica com 
uma lente cilíndrica (lente esfero-cilíndrica). As lentes que se prescrevem para a correcção dos defeitos 
da visão são expressas em termos de combinações de superfícies esféricas e superfícies cilíndricas. 

Para se especificar um meridiano, utiliza-se o sistema TABO que mede os ângulos no sistema 
anti-horário. O ângulo correspondente ao meridiano será o que o meridiano faz com o eixo horizontal (ver 
figura 2-11). 

 

0º 180º 

90º 
0º 

90º 

180º 

 
Figura 2- 11 Representação do sistema de medição angular de um determinado meridiano. Sistema TABO. 
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O sistema de coordenadas é o que é visto pelo examinador e não pelo paciente. Olhando para os 
olhos do indivíduo examinador especifica a orientação angular do cilindro de acordo com o esquema da 
figura 2-12. 

 

0º0º 180º180º 

90º90º
135º

70º

 
Figura 2- 12 Representação em pormenor do sistema de coordenadas para orientação angular do cilindro de 
acordo com o sistema TABO. 
 
 

Como o eixo da potência é perpendicular ao eixo do cilindro, ambas as orientações podem ser 
marcadas simbolicamente num sistema de eixos cruzados tal como se pode ver na figura 2-13. 

Na cruz de potências da figura 2-13 (a) temos +4.00×90º, definindo um eixo do cilindro a 90º e 
perpendicular a ele um eixo com uma potência de +4.00D. Na parte inferior pode observar-se a lente 
cilíndrica correspondente. Nos outros exemplos temos dois cilindros, um negativo e um positivo, com 
eixos a 30º e a 150º e potências -2.00D e +3.00 D, respectivamente. Quando o eixo do cilindro estiver na 
horizontal a lente cilíndrica será especificada com um eixo de 180º em vez de 0º para evitar confusões 
entre 0º e potência 0. 

Uma forma alternativa de especificar a orientação do eixo do cilindro é através da especificação do 
eixo da potência. Nesse caso símbolo @ é utilizado para eixo da potência. Nos exemplos da figura 2-13 
teríamos então +4.00@180º, -2.00@120º e +3.00@60º. 

 

+4.00 D 

0.00 D 

90º 30º 
0.00 D 

-2.00 D 

150º 
0.00 D 

+3.00 D 

+4.00 × 90º +3.00 × 150º -2.00 × 30º 

(a) (b) (c)  
Figura 2- 13 Representação de vários eixos para três lentes cilíndricas com inclinações diferentes. 

 
 

2.3.2 Lentes esfero-cilíndricas 
 

As lentes esfero-cilíndricas resultam da composição de uma lente esférica com uma lente cilíndrica. 
Dessa junção resulta que uma lente esfero-cilíndrica apresenta potência em ambos os meridianos, 



  Superfícies Ópticas não Esféricas 

- 58 - 

embora o valor das potências sejam diferentes para os dois meridianos. As lentes esfero-cilíndricas 
podem facilmente diferenciar-se de uma lente esférica devido às suas características. Para uma lente 
esférica a distância ao centro de curvatura (raio de curvatura) é constante e igual em todos os 
meridianos, não existindo meridianos principais nas lentes esféricas uma vez que são todos semelhantes 
e com a mesma potência. Disto resulta que uma lente esférica apresenta espessura constante ao longo 
do bordo da lente. Dentro das lentes esféricas, as lentes positivas diferenciam-se das lentes negativas 
devido à sua geometria. As lentes positivas são mais espessas no centro do que nos bordos, enquanto 
que as lentes negativas são mais espessas nos bordos que no centro (figura 2-14).  
 

 

r 

r 

r 

r 

 
Figura 2- 14 Representação da geometria de lentes esféricas positivas ou convergentes e negativas ou 
divergentes (bordos mais finos que o centro lentes positivas, bordos mais grossos que o centro lentes 
negativas).  

 
 
As lentes esféricas apresentam a seguinte notação: 
       
                         D 2+  
 
 
 
 
 
 
     D 2−  

sinal + indica que se trata de 
uma lente positiva ou 
convergente 

valor absoluto da potência da lente 
(em dioptrias) 

Não apresenta indicação de 
ângulo. 

sinal - indica que se trata de uma 
lente negativa ou divergente  

  
Rodando uma lente esférica em torno do seu centro, a imagem formada não sofre alterações, no 

entanto, deslocando uma lente negativa segundo uma determinada direcção a imagem formada pela 
lente acompanha o movimento da lente (o movimento da imagem é no mesmo sentido da lente), este é 
chamado movimento COM. Nas lentes positivas o deslocamento da lente e o movimento da imagem são 
em sentidos opostos. É o chamado movimento CONTRA. Os movimentos COM e CONTRA são uma 
forma rápida e expedita de se identificar se a lente é positiva ou negativa. 

Relativamente às lentes esfero-cilíndricas resultam da composição de uma lente esférica (positiva 
ou negativa) com uma lente cilíndrica (positiva ou negativa). Assim, as lentes cilíndricas têm potência nos 
dois meridianos principais. Como a potência é diferente em cada um dos meridianos a curvatura também 
é diferente, donde a espessura no bordo de uma lente esfero-cilíndrica não é constante como nas 
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esféricas, variando quando se passa de um meridiano a outro. No entanto tal como para as lentes 
esféricas as esfero-cilíndricas quando são positivas apresentam movimento CONTRA e no caso de serem 
negativas apresentam movimento COM. 

Para descrevermos uma lente esfero-cilíndrica temos que descrever a parte esférica, a parte 
cilíndrica e o eixo associado ao cilindro. A notação para as lentes esfero-cilíndricas é,  

 
 
         15º  00.1   00.2 ++  
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esfera 

 
Tal como para as lentes cilíndricas uma lente esfero-cilíndrica também pode ser representada num 

sistema de eixos cruzados. Na representação de uma tal lente, temos que ter em atenção que a potência 
esférica tem estar obrigatoriamente nos dois meridianos e que a potência cilíndrica só estará num dos 
meridianos (no da potência). Exemplos de representações deste tipo de lentes são apresentados abaixo. 

• Associação de uma lente esférica positiva de +3.00 D com um cilindro negativo de potência      
-2.00 D com eixo a 30º. 

 
 

+ 
30º 

0.00 D 
-2.00 D 

= 30º 
+3.00 D 

+1.00 D 
+3.00 D +3.00 D 

30º 

Esférica 
+3.00 D 

Cilíndrica 
-2.00 × 30º 

Esfero-cilindrica 
+3.00   -2.00× 30º 

ou 
+1.00  +2.00× 120º  

• Associação de uma lente esférica de +7.00 D com um cilindro +1.00 × 90º.  
 

+ 

0.00 D 

+1.00 D = -6.00 D 

-7.00 D -7.00 D 

-7.00 D 

Esférica 
-7.00 D 

Cilíndrica 
+1.00 × 90º 

Esfero-cilindrica 
-7.00   +1.00× 90º 

ou 
-6.00  -1.00× 180º 

  
 

As lentes esféricas são caracterizadas por terem a mesma potência em qualquer eixo. Assim, no 
primeiro exemplo como o eixo do cilindro está orientado a 30º representou-se a lente esférica também 
segundo os eixos de 30º e 120º, para de seguida se poder efectuar, de uma forma simples, a adição das 
potências meridiano a meridiano. O passo seguinte será escrever a lente esfero-cilíndrica segundo a 
notação descrita acima (parte esférica e parte cilíndrica). Para isso observem-se os exemplos anteriores. 
Na cruz final a potência de um dos meridianos é relativa só à potência esférica porque é somada com 
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potência nula do meridiano corresponde do cilindro, enquanto a potência do outro meridiano diz respeito 
à soma da potência da esfera mais a potência do cilindro nos meridianos correspondentes.  

Supondo que não conhecemos as lentes em questão temos duas hipóteses para chegar à notação 
esfero-cilíndrica: ou escolhemos a potência mais positiva para potência da lente esférica (suponhamos 
F1) ou escolhemos a potência mais negativa para a potência esférica (suponhamos F2). Dependendo da 
nossa escolha a potência do outro meridiano (que não foi escolhido para esfera) será então a soma da 
potência esférica e da potência cilíndrica, isto é, 

• 1º Caso: Se F1 for a potência esférica ( EsfFF =1 ), então CilEsf FFF +=2 . 

• 2º Caso: Se F2 for a potência esférica ( EsfFF =2 ), então CilEsf FFF +=1 . 

 
Conhecendo então F1 e F2 teremos: 
• 1º Caso: 1FFEsf = ⇒ 12 FFFCil −=  e o eixo do cilindro será o do meridiano de F1. 

• 2º Caso: 2FFEsf = ⇒ 21 FFFCil −=  e o eixo do cilindro será o do meridiano de F2. 

 
Por exemplo na associação da lente esférica D 00.7−  com o cilindro 90º 00.1 ×+ , o resultado final 

da associação é D 00.71 −=F  e D 00.62 −=F . Escolhendo para parte esférica, a potência do meridiano 
vertical ( D 00.7− ), temos então: D 00.7−=EsfF , D 00.1+=CilF  (de ( )D 00.700.6 −−− ) e o eixo do cilindro 
90º, ou seja na notação esfero-cilíndrica teremos º9000.100.7 ×+− .  

Escolhendo agora para potência esférica o valor do meridiano horizontal temos que: D 00.6−=EsfF , 

D 00.1−=CilF  (de ( )D 00.600.7 −−− e o eixo do cilindro 180º, ou seja na notação esfero-cilíndrica teremos 

º18000.100.6 ×−− .  
As duas lentes esfero-cilíndricas obtidas sendo perfeitamente equivalentes são obtidas de forma 

diferente. Na primeira situação é a composição de uma lente esférica D 00.7−  com um cilindro 

º9000.1 ×+ , enquanto que na segunda situação temos a adição de uma lente esférica de D 00.6−  com um 
cilindro de º18000.1 ×− . 

Como acabamos de ver existem sempre duas formas para expressar a mesma lente: a forma 
regular e a sua transposta. Por norma, porque o sistema que se encontra no equipamento utilizado nos 
exames optométricos só possui cilindros negativos, associamos a forma regular à que se obtém o cilindro 
negativo e a forma transposta à que tem o cilindro positivo. 
 As duas formas apresentam o eixo do cilindro desfasado de 90º e sinais simétricos para a potência 
do cilindro.  
 

2.3.3 Lentes bicilíndricas 
 
Como já foi referido anteriormente o efeito óptico de duas lentes cilíndricas pode ser obtido também pela 
combinação de lentes esféricas e lentes cilíndricas. A potência cruzada resultante de uma lente, vem da 
soma das potências cruzadas das suas duas superfícies. Uma superfície pode ser esférica com um único 
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raio de curvatura, pode ser cilíndrica com dois raios de curvatura, um dos quais é infinito, ou pode ser 
toroidal com dois raios de curvatura distintos. Em qualquer dos casos os raios de curvatura podem ser 
positivos ou negativos consoante as superfícies forem côncavas ou convexas. 
 Uma superfície toroidal apresenta a forma de um “donut” ou de uma câmara de ar insuflada. A 
superfície é caracterizada por dois raios de curvatura distintos mutuamente perpendiculares. Se os raios 
de curvatura aumentassem um à custa do outro a forma da superfície toroidal aproximava-se de uma 
superfície cilíndrica. Então, uma superfície cilíndrica é um caso especial de uma superfície toroidal. 
Quando duas superfícies cilíndricas com eixos perpendiculares são colocadas em contacto, a superfície 
equivalente é uma superfície toroidal. 
 As lentes bicilíndricas são lentes astigmáticas que podem ser consideradas compostas por duas 
lentes plano-cilíndricas unidas pelas suas superfícies planas. Estas lentes são descritas indicando os dois 
cilindros com os seus eixos respectivos, unidos mediante o símbolo de combinação, da seguinte forma: 
 

 
 
     11 α×P      22 α×P  ∩

∪

Cilindro 1 Cilindro 2 

Símbolo de combinação  
 
Ainda que em principio os dois eixos 1α  e 2α  possam formar entre si um ângulo qualquer, 

existem disposições particulares obrigando a que sejam paralelos ou perpendiculares.  
Duas lentes plano-cilíndricas com os eixos paralelos (figura 2-25), são equivalentes a uma lente 

plano-cilíndrica única, cujos meridianos principais, eixo e contra-eixo, coincidem com os meridianos 
principais das lentes plano-cilíndricas componentes. Desta forma a potência segundo o eixo da lente 
bicilíndrica é zero, e a potência do contra-eixo é igual à soma algébrica dos cilindros.  

 
α×1F      αα ×=× 32 FF  onde 213 FFF +=  

 
Um caso particular dá-se quando os eixos dos cilindros são paralelos e os cilindros possuem 

potências iguais mas de sinal contrário, sendo a lente bicilíndrica equivalente neste caso uma lente de 
potência nula. 

 
Duas lentes plano-cilíndricas com os eixos perpendiculares, são equivalentes a um sistema 

astigmático regular onde o eixo de uma das lentes coincide com o eixo da potência (ou contra-eixo) da 
outra. 

 
α×1F      ( )º902 +× αF  

∩
∪

∩
∪
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Figura 2- 15 Associação de duas lentes cilíndricas com eixos do cilindro paralelos. 

 
 
A potência total da lente na direcção αº é F2, enquanto que a potência total na direcção 

perpendicular α ± 90º é F1. Os casos apresentados a seguir são exemplos práticos da combinação entre 
lentes cilíndricas. 
 

• Combinação de lentes cilíndricas com os eixos paralelos  
 

 

+ 
-2.00 D 

0.00 D 

=

0.00 D 
+2.00 D 

0.00 D 
+4.00 D 

+4.00 × 60º -2.00 × 60º +2.00 × 60º  
Resultado final da combinação: º6000.4 ×+      º6000.2º6000.2 ×+=×−  
 

• Combinação de lentes cilíndricas com os eixos perpendiculares a 0º e 180º 
 

+ 

+7.00 D 

0.00 D = +6.00 D 

+7.00 D 0.00 D 

+6.00 D 

+6.00 × 90º +7.00 × 180º +6.00 × 90º / +7.00 × 180º  
Resultado final da combinação: º9000.6 ×+      º18000.7 ×+  
 

• Combinação de lentes cilíndricas com os eixos perpendiculares quaisquer. 
 
 

+ 
+7.00 D 

0.00 D 

=
+7.00 D 

+6.00 D 
0.00 D +6.00 D 

+6.00 × 30º +7.00 × 120º +6.00 × 30º / +7.00 × 120º  
Resultado final da combinação: º3000.6 ×+      º12000.7 ×+  

∩
∪

∩
∪

∩
∪
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2.3.4 Outros tipos de lentes 
 

A capacidade do nosso sistema visual focar ao longe e ao perto instantaneamente, vai diminuindo 
progressivamente com a idade. Na maioria dos casos a partir dos 40-45 anos surgem problemas de visão 
ao perto, embora a visão ao longe ainda se mantenha bastante aceitável. Nestas situações temos que 
manter a visão ao longe e compensar a visão intermédia e a de perto. Uma solução envolve o uso de 
uma variação progressiva na potência entre a parte superior de uma lente, para visão ao longe, e a parte 
inferior dessa lente com mais potência, para visão ao perto. A parte superior da lente tem menor potência 
positiva enquanto que a parte inferior da lente tem de ter maior potência positiva. Este tipo de lente 
chama-se lente progressiva e apresenta alguns problemas relativos à presença de astigmatismo e 
distorção nas áreas periféricas da lente, conforme se pode observar na figura 2-16 nas áreas a tracejado. 

 

 
Figura 2- 16 Lentes de correcção progressivas e distorção nas áreas periféricas das lentes. 

 
 

Quanto maior for a diferença de potência na lente, piores se tornam estas aberrações. Se para a 
mesma diferença de potência, a área de transição for maior, as aberrações tornam-se menores, mas 
nesse caso as áreas úteis da lente são mais reduzidas. Os melhores desenhos, para estas lentes, são 
aqueles que tornarem as inevitáveis aberrações, o mais suavizadas possível e com uma forma que o olho 
se possa adaptar. 

Outro tipo de lentes, utilizadas para possibilitar boa visão ao longe e ao perto, são as lentes 
bifocais, cujo nome provém de terem duas posições focais. Estas lentes podem ser de dois tipos, as que 
têm um segmento na parte inferior da lente e as do tipo executivas que estão divididas a meio (ver figuras 
2-17). 

 
Figura 2- 17 Esquema geométrico das lentes bifocais e executivas. 

 
 

Nas lentes bifocais normais os segmentos podem apresentar duas formas: círculo ou meia lua. Os 
segmentos mais utilizados são os de meia lua porque sendo a superfície superior da segmento plana 
minimiza o salto na imagem quando se passa da visão ao longe para a visão ao perto. O segmento 
corresponde à zona de visão ao perto, enquanto que a visão ao longe utiliza a parte central da lente. Nas 
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lentes bifocais executivas a metade superior da lente é utilizada para a visão ao longe e a metade inferior 
da lente para a visão ao perto. Nas lentes bifocais normais, a posição do segmento varia conforme a lente 
se destinar ao olho direito ou ao olho esquerdo. Os segmentos encontram-se sempre desviados para o 
lado nasal (lado do nariz). 
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Capítulo 3  
 

O Sistema Óptico do Olho 
 
 
 

3.1 Introdução 
 
Os olhos em conjugação com o cérebro constituem um sistema bio-óptico notável. É um sistema que 
forma imagens de objectos para distâncias desde o infinito até a alguns centímetros à frente dos olhos. 
Tem a capacidade de ver cenas tão grandes como o céu que está por cima de nós e tão pequenas como 
a cabeça de um alfinete. É um sistema que se adapta automaticamente às diferenças de luminosidade 
conseguindo formar imagens em condições extremas, tal como permitir ver uma vela distante numa noite 
escura ou funcionar com a luz intensa do meio dia. Consegue distinguir pequeníssimas variações de cor 
desde o azul escuro até ao vermelho escuro. Consegue localizar objectos no espaço com elevada 
precisão, permitindo ao homem ter a capacidade de profundidade, relevo e proximidade dos objectos, 
criando assim um mapa do nosso mundo a três dimensões. 

Por tudo isso a visão é olhada como o mais precioso dos nossos sentidos e a sua perda é 
catastrófica. É também o mais complexo de todos eles, visto que o seu estudo envolve diversos ramos 
diferentes da ciência. A breve introdução que se segue, dos vários aspectos relacionados com a visão, 
tem o intuito de fornecer um panorama do estudo que se segue.  

 
O Olho como um órgão do corpo humano 

 
Como o olho humano é parte integrante do corpo não pode ser entendido sem um conhecimento 

geral de anatomia e fisiologia. Além disso como são, ou podem ser, utilizadas drogas (por pessoas 
autorizadas) no exame do olho humano, a farmacologia é outra área de estudo a não esquecer. 
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Como um exame completo ao olho humano é feito de forma a detectar qualquer anomalia que 
requeira a possibilidade da existência de cuidados médicos, é então necessário um conhecimento geral 
de patologia para um entendimento de condições oculares anormais. 

 
 

O Olho como um instrumento óptico 
 
Dado a integridade do olho como um órgão do corpo humano, vamos considerar os estádios 

médios no processo visual. Primeiro estádio, o estímulo normal à visão visto normalmente como luz. 
A luz visível é a radiação que está compreendida dentro de uma banda do espectro 

Electromagnético que vai de 380 a 780 nm. As radiações de cada lado desta banda do espectro são o 
Ultravioleta e o Infravermelho, importantes devido aos efeitos que produzem nos olhos (efeitos 
prejudiciais). 

O olho com boa iluminação é capaz de resolver, normalmente, 40 linhas por centímetro a uma 
distância de 40 cm.  

 
 

O Olho como um fotosensor 
 
A formação de uma imagem é o primeiro passo no processo visual. A retina cobre a maior parte do 

olho e forma um alvo sensível, no qual a imagem óptica se deve formar quando o sistema está bem 
focado. 

Uma capacidade do olho humano é a sua possibilidade de funcionar num grande domínio de 
níveis de claridade. Isto é possível através da existência de dois conjuntos diferentes de receptores 
retinianos denominados bastonetes e cones. 

Os bastonetes tornam-se altamente activos para níveis baixos de luminância (escotópica) 
enquanto que os cones são mais activos para elevados níveis de luminância (fotópica). Num olho existem 
aproximadamente 7 milhões de cones e pelo menos dez vezes esse número de bastonetes. 

Os sistemas cones e bastonetes podem operar simultaneamente, mas quando se passa 
repentinamente para um nível muito baixo, ou muito alto de iluminação, é preciso esperar alguns minutos 
para que os olhos se adaptem à escuridão ou à claridade. 

O próximo estádio no processo de visão é uma complicada reacção fotoquímica entre a luz que 
incide na retina e as substâncias químicas que absorvem a luz dentro dela. 

A quantidade de luz que penetra em cada olho pode ser regulada pela íris, que controla o diâmetro 
da pupila. 

 
 

O Olho e o cérebro como um processador de dados 
 
A visão simplista de um interruptor da retina para o cérebro, sugere uma comparação com uma 

linha de luzes individuais usadas para enviar mensagens. Os sinais dos receptores da retina, de cada 
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olho, passam para o córtex visual do cérebro onde uma única imagem ocular é constituída ponto por 
ponto por fusão das imagens retinianas direita e esquerda. 

A interacção entre processos retinianos e neurais, toma lugar entre vários grupos de receptores da 
retina, parecendo canais especializados para a detecção de linhas verticais e horizontais, diferentes 
frequências espaciais e outras informações importantes da imagem observada. 

 
 

O Olho como um par 
 
Uma vantagem da existência de dois olhos é a possibilidade extrairmos informação adicional sobre 

as posições relativas dos objectos no espaço, devido aos seus diferentes pontos de vista. 
Como a visão é uma sensação, temos consciência dos nossos olhos estarem separados. 
A visão binocular, uso simultâneo de ambos os olhos trabalhando em conjunto, ocorre em vários 

estádios do desenvolvimento de diferentes espécies, mas atinge o seu mais alto nível de perfeição nos 
primatas. Um dos factores que torna isso possível é que a retina não é igualmente sensível em toda a sua 
área. Numa zona central muito pequena, a fóvea central, densamente povoada de cones (só com cones), 
a acuidade visual ou agudeza visual atinge um pico muito pronunciado. Duas vantagens muito 
importantes que resultam desse facto são que em primeiro lugar podemos concentrar a nossa atenção 
visual e mental num pequeno mas adequado campo e em segundo lugar a fóvea tem o papel importante 
de monitorizar os necessários movimentos dos olhos. A não ser que o objecto que está a ser observado 
tenha a imagem na fóvea de cada olho, acontece a diplopia (visão dupla). 

Um conjunto de seis músculos externos ligados ao globo ocular permitem que ele se mova em 
qualquer direcção desejada. No estudo que se vai seguir vamos assumir que: 

1. A convenção de sinais é a estabelecida no capítulo 1. 
2. Em problemas que envolvam um olho, a observar um objecto através de um prisma ou de uma 

lente, ignora-se em primeiro lugar o olho e a sua posição, determinando-se a posição e as 
dimensões da imagem formada pela lente ou pelo prisma pelos métodos normais. Em segundo 
lugar esta imagem, real ou virtual conforme o caso, torna-se objecto para o olho. 

 
As unidades fotométricas usadas são, para a luminância a cd m-2 e para a iluminância retiniana o 

troland. 1 troland é a unidade de iluminância que corresponde a um olho com uma área pupilar de 1 mm2 
que observa uma superfície com uma luminância de 1 cd m-2. 

 
 

Sistemas não equifocais 
 
O olho é um exemplo de um sistema óptico não equifocal, no qual o primeiro e o último meio têm 

diferentes índices de refracção. Em geral tais sistemas têm seis pontos cardinais simetricamente 
posicionados (figura 3.1): 

• F e F’- o primeiro e o segundo focos principais, definidos exactamente como para uma única 
superfície refractora. 



  O Sistema Óptico do Olho 

- 68 - 

• P e P’ - o primeiro e segundo pontos principais. 
• N e N’ - o primeiro e segundo pontos nodais. 
 

 

h 

B F 
P P’ 

N N’ 
F’ B’ 

h’ 

Q’ 

f 

u v 

Q n1 nk+1 
f ’ 

 
Figura 3- 1 Pontos cardinais e focos conjugados de um sistema refractor não equifocal. 

 
 

O sistema como um todo tem uma potência equivalente F dada por: 
 

f
n

f
nF 11k −=
′

= +  

 
onde f ‘= P’F’, f = PF, n1 representa o índice de refracção do primeiro meio e nk+1 o índice de refracção do 
último meio de um sistema tendo k superfícies. Se u é medido a partir de P e v a partir de P ’ a relação 
entre focos conjugados toma mais uma vez a forma 

 
FVV +=′  

 

onde  
l

nV
′

=′ +1k  e  
l

nV 1=  . 

 
Seja um raio de um ponto objecto não axial, Q, direccionado para P e fazendo um ângulo u com o 

eixo óptico (figura 3-2), o raio emergente correspondente parece ter passar por P ’ e fazer um ângulo u ’ 
com o eixo óptico tal que 

 
unun 11+k =′  
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Figura 3- 2  Construção de uma imagem para um sistema óptico usando os pontos principais e nodais. 

 
 
Outro raio partindo de Q é direccionado para o ponto N. O raio emergente correspondente parece 

ter passado por N ’ sem variar a sua direcção. Tal como mostra a figura 3-2, estes dois pares de raios 
podem ser usados para construir a imagem B’Q’ de um objecto BQ.   

 
 
Efectividade 

 
Tenha-se um feixe de raios a percorrer um meio de índice de refracção n e seja a distância à 

origem do feixe de raios, medida a partir de um ponto específico O (figura 3-3). 
 

 

lx 

lx l0 

l0 d d 

(n) 

O X O X 
(n) 

(a) (b)  
Figura 3- 3 Efectividade (a) feixe convergente, (b) feixe divergente. 

 
 
Depois de ter percorrido uma distância d em metros, a partir de O, para um outro ponto específico 

X, a frente de onda está a uma distância lx do seu foco. Assim, dll −= 0x  e xx lnV =  e virá: 
 

 
0
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=

−
=  

 
isto expressa uma relação geral para a efectividade, denotando uma variação da vergência quando a luz 
passa de um ponto ou superfície de referência para um outro ponto. 

Se d é relativamente pequeno, a expressão anterior pode ser expandida pelo teorema binomial 
dando: 
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 2
0000x 1 V

n
dVV

n
dVV +≈⎟

⎠
⎞

⎜
⎝
⎛ ++≅ L  

 
a quantidade n

d  é um exemplo de uma distância atravessada por um feixe de raios, dividida pelo índice 

de refracção do meio.   
 
 

Ângulo e potência de um prisma 
 
Conforme é do domínio comum, os ângulos podem ser expressos em graus ou radianos, mas não 

só. Existe uma outra unidade que pode ser utilizada para expressar um ângulo que é a dioptria prismática 
(Δ). Esta unidade (introduzida por C.F. Prentice em 1890) reveste-se de grande importância na óptica 
oftálmica.  

Se u é um ângulo menor que 90º então u em dioptrias prismáticas vem: 
 
( ) uu tan100=Δ  

 
da figura 3-2 temos: 

 

Δ⎟
⎠
⎞

⎜
⎝
⎛=

BP
BQu 100  

 
a desvantagem deste sistema é que a tangente de um ângulo não aumenta na proporção do ângulo, isto 
é: 
 

º31.112.0tan20 1 ==Δ −  
 

º80.214.0tan40 1 ==Δ − . 
 
Para ângulos pequenos, podemos afirmar que 4º = 7Δ e que a dioptria prismática é equivalente a 

uma centésima do radiano, já que uuu ≅≅ tansin , logo rad1001=Δ . Na área oftálmica a dioptria 
prismática é a unidade aceite para potência prismática e desvio. 
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3.2 A Córnea 
 
Vamos agora estudar os vários componentes do sistema óptico do olho. A córnea (figura 3-4) é uma 
estrutura altamente transparente em forma de menisco, com um diâmetro de aproximadamente 12 mm e 
ligeiramente menor verticalmente que horizontalmente. A espessura ao centro é normalmente entre 0.5 e 
0.6 mm. 

Uma fina película de fluido lacrimal cobre a superfície anterior, mas como é tão fina não afecta a 
potência de forma apreciável podendo por isso ser ignorada neste contexto. 

Em primeira aproximação ambas as superfícies podem ser observadas como esféricas, tendo 
raios de curvatura de +7.7 mm para a cara anterior e de +6.8 mm para a cara posterior (valores para o 
olho de Gullstrand). O índice de refracção da substância da córnea pode ser tomado como 1.336 (para o 
olho de Gullstrand). Utilizando a equação que relaciona a potência com o raio de curvatura vamos 
determinar a potência da córnea.  
 

 

n2=1.376 
Ar (n1=1) Humor aquoso (n3=1.336) 

P1 = +48.83 D 
P2 = -5.88 D 

 r1 = + 7.7 mm  r2 = + 6.8 mm 

A1 A2 C1 C2 

 
Figura 3- 4 Perfil da córnea humana (valores típicos do olho esquemático de Gullstrand). 

 
 

( )RnnF −′=  
 

donde: 
 
- (1) Para a superfície anterior temos: 

 

D 83.48
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×
−

=
−
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- (2) Para a superfície posterior temos: 
 

D 88.5
108.6

376.1336.1
32 −=

×
−

=
−

F  

 

 A potência total da córnea dada por  21
2

21 FF
n
dFFF ++=   é então de + 42.73 D. 
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 Desprezando a espessura da córnea (portanto desprezando o último termo) teríamos uma 
potência de +42.95 D. Na prática, para cálculos rápidos, a espessura da córnea pode ser desprezada já 
que a alteração produzida na sua potência é somente de 0.22 D. 
 
 

3.3 Câmara anterior 
 

A câmara anterior é a cavidade que está por detrás da córnea e em frente da íris e da lente cristalino. É 
preenchida com um líquido incolor chamado humor aquoso já que é constituído por 98% de água. 

A profundidade da câmara anterior, ao longo do eixo óptico, é rigorosamente a distância desde o 
vértice posterior da córnea até à superfície anterior da lente cristalino (às vezes inclui a espessura da 
córnea). Um valor médio para a espessura da câmara anterior é de 3.0 mm. A profundidade da câmara 
anterior influencia a potência total do olho. Se todos os outros elementos se mantiverem inalterados uma 
redução de 1 mm na profundidade da câmara anterior faz com que a potência total do sistema óptico 
aumente em cerca de 1.4 D. O efeito contrário resulta de uma variação de profundidade na direcção 
oposta. 

 
 

3.4 A íris e a pupila 
 
A quantidade de luz admitida pelo olho é regulada pela pupila, uma abertura aproximadamente circular na 
íris. Em condições normais a pupila reage a: 

(1) ⇒  Uma variação da luminância. 
(2) ⇒ Um estímulo similar aplicado só à pupila chamado reacção consensual. 
(3) ⇒ À fixação perto, que é acompanhada de uma contracção pupilar. 
 
As dimensões da pupila diminuem com a idade de uma maneira uniforme. Num adulto jovem a 

variação do diâmetro de acordo com a luminância é de 4.5 até 8.0 mm. Aos 80 anos de idade o diâmetro 
diminui para cerca de 2.5 mm e as variações na luminância produzem poucas variações no diâmetro da 
íris. 
 
 

3.5 O Cristalino 
 
O cristalino tem uma finalidade dupla, por um lado equilibrar a potência refractiva do olho e por outro 
fornecer um mecanismo de focagem para diferentes distâncias (chamado de acomodação). Tanto 
anatomicamente como opticamente, o cristalino é uma estrutura altamente complexa composta por 
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camadas de fibras dispostas radialmente de modo regular permitindo a formação de um círculo de 
difracção simétrico. 

O cristalino está constantemente a crescer formando-se novas camadas de fibras exteriormente. 
Como parte deste processo de crescimento o cristalino é susceptível a mudanças na sua flexibilidade e 
transparência, diminuindo estas com a idade. 

A substância que forma o cristalino está contida numa cápsula altamente elástica. Uma estrutura 
de ligamentos suspensivos, denominada zónula de Zinn, que liga a periferia da cápsula ao corpo ciliar 
que lhe está próximo, coloca o cristalino em posição e controla a curvatura das superfícies através de 
variações produzidas na tensão produzida pela acção do músculo ciliar. 

A lente cristalino tem um diâmetro de aproximadamente 9 mm e tem uma forma biconvexa, a 
superfície anterior é mais plana que a posterior. Quando a lente está num estado não acomodado (tenso), 
a espessura ao centro da lente é de 3.6 mm e o raio de curvatura na região perto do eixo é de +10 mm 
para a cara anterior e -6 mm para a cara posterior, valores assumidos no olho esquemático de Gullstrand. 

Quando existe acomodação ambas as superfícies, mas de um modo especial a anterior, assumem 
uma forma mais curva. A espessura ao centro aumenta e o vértice da superfície anterior desloca-se para 
fora, reduzindo-se assim a profundidade da câmara anterior. Os perfis do cristalino típico no estado 
relaxado e no seu estado de maior acomodação estão representados na figura 3-5, bem como o espaço 
de variação dos centros de curvatura. 

 
 

C4 C3 

Núcleo 

 
Figura 3- 5 Perfil do Cristalino no estado acomodado (linha a tracejado) e não acomodado (linha a cheio). 

 
 

A superfície posterior do cristalino está em contacto com o humor vítreo, um gel transparente que 
preenche o segmento posterior do globo ocular. O índice de refracção deste gel pode tomar-se como 
sendo igual ao do humor aquoso (1.336). A composição química dos dois humores (aquoso e vítreo) é 
muito semelhante. 

No cristalino consegue-se distinguir uma parte central chamada núcleo e uma parte que a 
contorna que é o córtex. No centro do núcleo o índice de refracção atinge o seu valor máximo, entre 1.40 
e 1.41, diminuindo à medida que nos afastamos do centro, sendo de 1.385 perto dos pólos e cerca de 
1.375 perto do equador. Este gradiente do índice de refracção, produz um efeito convergente tal como 
uma lente positiva. Tomando os valores dos raio de curvatura e da espessura axial, atrás referidos, é 
necessário assumir para o índice de refracção um valor fictício de 1.416, para obtermos a mesma potência 
do cristalino esquemático homogéneo, que está compreendido entre os valores de +21 D e +22 D. 
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Tomando então como índice de refracção para o cristalino o valor de 1.416, as potências das 
superfícies no seu estado relaxado podem ser calculadas com base nas equações descritas no ponto 1.4 
e seguintes. Desse modo temos: 

 
 Para a superfície anterior 
 

   D00.8
1010

336.1416.1
33 +=

×+
−

=
−

F  

 
Para a superfície posterior  

 

   D33.13
106

416.1336.1
34 +=

×−
−

=
−

F  

 
Temos então uma potência equivalente de aproximadamente +21.6 D. A suposição de que as 

superfícies da lente (cristalino) são esféricas é feita só por conveniência. Observações cuidadosas 
revelam que existe um grau de aplanamento periférico acentuado, especialmente na superfície anterior 
no seu estado acomodado. 

Devido a este facto e ao de que na córnea também sucede o mesmo fenómeno, a aberração 
esférica é mantida dentro dos limites razoáveis.  

 
 

3.6 A retina 
 
A retina é uma estrutura fina mas muito complexa. As suas funções estendem-se muito mais para além 
do que se suponha originalmente. A retina cobre a porção posterior do globo ocular, estendendo-se até à 
ora serrata perto do corpo ciliar. 

As fibras nervosas que transmitem impulsos dos receptores retinianos individuais ou em grupos, 
deslocam-se através da superfície da retina para o nervo óptico. A retina tem também vasos sanguíneos 
visíveis claramente através de um oftalmoscópio. Apesar destas obstruções à luz incidente, a eficiência 
do sistema não é afectada. Em certas condições, contudo, os vasos sanguíneos retinianos podem ser 
observados através das sombras que eles projectam. 

A capacidade da retina para distinguir detalhes não é uniforme em toda a sua extensão e tem um 
máximo na região da mácula. Esta é uma área aproximadamente circular com um diâmetro de 1.5 mm, 
contendo um pequena área central, a fóvea central, contendo exclusivamente cones retinianos. É na 
fóvea que o olho atinge o seu pico máximo de resolução. Quando um objecto cativa a atenção visual, os 
dois olhos rodam instintivamente de forma que a imagem se forme em cada fóvea. 

Do ponto de vista óptico, a retina pode ser descrita como um alvo no qual se forma a imagem do 
objecto observado. Pode ser observada como parte de uma superfície esférica côncava com um raio de 
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curvatura próximo de -12 mm. A curvatura da retina tem duas vantagens, em primeiro lugar as imagens 
formadas pelo sistema óptico tendem a ter superfícies curvas (a curvatura da retina é então ideal deste 
ponto de vista) e em segundo lugar a retina com a sua curvatura acentuada cobre um maior campo de 
visão, que de outro modo não seria possível.  
 
 

3.7 O olho esquemático 
 

O olho esquemático é uma especificação óptica teórica de um olho idealizado, contendo a maior parte 
das dimensões mas omitindo as mais complicadas. A potência equivalente do olho como um todo é cerca 
de +60 D e os seus pontos cardinais estão situados da forma indicada na figura 3-6. Os dois pontos 
principais, P e P’, estão situados na câmara anterior às distâncias de 1.55 mm e 1.85 mm respectivamente 
da superfície frontal da córnea. Os pontos nodais, N e N’, estão também separados de 0,3 mm e próximos 
da superfície posterior do cristalino. A distância focal anterior, PF, é aproximadamente de -16.53 mm e a 
posterior, P’F’, de + 22.04 mm. As relações gerais e os percursos dos raios luminosos indicados nas 
figuras 3-1 e 3-2 aplicam-se ao olho esquemático (figura 3.7). 
 

 

P’ F F’ N N’ P 

 
Figura 3- 6  Pontos cardinais do olho não acomodado. 

   
 

 

  
- 14.98 

fo = - 16.53 

fo’ = + 22.04 

+ 23.89 

+ 16.53 

+ 1.85 
+ 1.55  

P P’ N N’ F’ 

 
Figura 3- 7 O olho esquenmático de Gullstrand – Emsley (medidas em milímetros). 

 

3.7.1 Centro óptico 
 
No olho esquemático assume-se que todas as superfícies refractoras são coaxiais, isto é, a córnea 

e o cristalino têm um eixo óptico comum. A centragem óptica de um olho humano típico não é verdadeira, 
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o cristalino está normalmente descentrado e inclinado em relação à córnea. Por esta razão o olho não 
possui um verdadeiro eixo óptico. Contudo os pontos principais da córnea coincidem quase com os do 
cristalino esquemático. Consequentemente, uma linha que passe o mais próximo possível desses pares 
de pontos representa uma boa aproximação de um eixo óptico. 

 

3.7.2 Pupilas de entrada e de saída 
 
Se a pupila HJ (figura 3-8) com o centro em E0 é observada como um objecto para a córnea, dá 

origem a uma imagem ligeiramente maior com o seu centro de curvatura em E. Esta imagem é chamada 
pupila de entrada. Tomada como objecto para o cristalino, a pupila HJ dá origem a outra imagem, a pupila 
de saída com centro em E’. 

Disto resulta que um feixe de luz incidente dirigido para a pupila de entrada e de maneira que a 
preencha, passa através da área total da pupila real (depois da refracção na córnea) e finalmente emerge 
no humor vítreo, parecendo ter sido limitado pela pupila de saída. Já que um raio direccionado para o 
ponto axial E aparece, depois da refracção, como passando pelo ponto axial E’, estes dois pontos têm de 
ser conjugados relativamente ao sistema como um todo. 

 
 

E’ 
E0 

E 

Pupila Real 
Pupila de 

Saída 
Pupila de 
Entrada 

u 
u’ 

H 

J 

 
Figura 3- 8 Pupilas do olho: real, de entrada e de saída. 

 
 

Com base na teoria paraxial, mostra-se que a pupila de entrada está situada cerca de 3 mm atrás 
da superfície anterior da córnea e é cerca de 13% maior que a pupila real. A pupila de saída está muito 
perto da pupila real e atrás dela sendo 3% maior que ela. 

Devido a que E e E’ são pontos conjugados pode-se estabelecer uma relação entre os ângulos u e 
u’: 

 

  sistema  dado  um  para  constante=
′

u
u  

 
para o olho esquemático o valor desta constante é de 0.82. 
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3.7.3 O eixo visual 
 
Seria normal esperar que a fóvea estivesse situada na retina na sua intersecção com o eixo óptico, no 
chamado pólo posterior da retina. No entanto, a fóvea encontra-se deslocada temporalmente e para baixo 
relativamente à posição esperada. Isso leva-nos a definir um eixo visual distinto do eixo óptico. 
 O eixo visual, é tido como a linha imaginária dirigida ao primeiro ponto nodal N que sai de N’ 
paralela à primeira e que passa pela fóvea. Sem muito erro pode assumir-se que existe uma posição 
média dos dois pontos nodais e que o eixo visual pode ser definido como a linha que passa por essa 
posição média e pela fóvea. Contudo, existem autores que não concordam com esta definição afirmando 
que por eixo visual se deve entender o eixo ou raio principal do feixe de raios que entra pela pupila e 
converge para a fóvea. Neste livro o termo eixo visual será usado para definir o percurso do raio incidente 
dirigido para o centro da pupila de entrada que depois de refractado incida na fóvea (figura 3-9). 
 

 

  
M

E 
E′ Fe’ 

Eixo Visual 
NASAL 

TEMPORAL 

Ângulo Alfa 

Eixo Óptico 

 
Figura 3- 9 Eixo óptico e eixo visual do olho. 

 
 
 O ângulo entre o eixo óptico e o eixo visual é chamado ângulo alfa. O ângulo alfa é considerado 
positivo quando o eixo visual, no espaço objecto, está no lado nasal relativamente ao eixo óptico. Um 
valor comum para o ângulo alfa é 5º. 
 
 

3.8 O campo de visão 
 
No lado temporal, onde não existem obstruções, o campo de visão estende-se para mais de 90º 
relativamente ao eixo óptico. Um raio extremo que entre no olho por esse lado, segue aproximadamente 
o percurso apresentado na figura 3-10. Este diagrama também serve para explicar a razão da retina se 
estender até tanto á frente no olho. Se não houvesse luz a chegar a essa região não seria necessário que 
existisse aí retina. No lado nasal, o nariz, as sobrancelhas e as bochechas limitam o campo de visão 
monocular, donde a sua forma ser irregular. Por outro lado se UN e VN forem raios incidentes formando 
um ângulo u entre si, os raios refractados conjugados divergirão como se saíssem de N ’ formando o 
mesmo ângulo u tocando na retina nos pontos U ’ e V ’. 
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Percurso do Raio Temporal Extremo 

  

 

 Eixo Óptico 

 
Figura 3- 10 Percurso de um raio de luz  no limite do campo visual do olho. 

 
 

Assim, podemos inferir que uma extensão linear da retina subtendendo um ângulo conhecido no 
segundo ponto nodal corresponderá a uma extensão angular igual no espaço objecto (figura 3-11).   

 
 

  N N′ 

V 

U V’ 

U’ 

u u 

 
Figura 3- 11 Projecção visual através do ponto nodal. 

 
 

A fóvea tem cerca de 0.3 mm horizontalmente e 0.2 mm verticalmente, subtendendo um ângulo no 
segundo ponto nodal cerca de 0.018×0.012 radianos. A uma distância normal de leitura (por exemplo 35 
cm) a área observada é de 6.3×4.2 mm, o suficiente para conter 4 letras de tamanho de jornal ou revista. 

Na papila, ou disco óptico, onde o nervo óptico deixa o olho, não existem receptores retinianos. Se 
não existem fotoreceptores não existe visão, donde consequentemente vai existir um ponto cego no 
campo visual. O disco óptico mede cerca de 2 mm verticalmente por 1.5 mm horizontalmente, 
subtendendo um ângulo de 7º por 5º, respectivamente, no segundo ponto nodal. Esta é a extensão angular 
subtendida pelo ponto cego do olho no espaço. 

O centro do disco óptico está deslocado para o lado nasal e ligeiramente para cima relativamente 
à fóvea. Relativamente ao eixo visual o centro do ponto cego está deslocado 15º para o lado temporal e 2º 
para baixo. Na figura 3-12 mostram-se as posições na retina do disco óptico, da fóvea e da mácula, 
relativamente ao pólo posterior do olho. As dimensões apresentadas em graus referem-se à extensão 
angular subtendida no segundo ponto nodal. 
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Figura 3- 12 Posições e dimensões relativas da mácula e do disco óptico. 

 
 

A característica mais surpreendente do ponto cego é que a sua existência não é notada. Mesmo 
com um olho ocluído e o outro a observar um padrão brilhante e colorido ocupando uma grande 
extensão, o observador continua a não ter consciência de nenhum ponto escuro onde não exista visão.   

 
 

3.9 O olho reduzido 
 
Para a maioria das finalidades, a óptica do olho pode ser estudada adequadamente com base numa 
analogia muito simples chamada olho reduzido. Tal como apresentado na figura 3-13, o olho reduzido 
consiste de uma superfície única convexa, que separa o ar de um meio com índice de refracção n’ 
semelhante ao do corpo vítreo. 

 
 

  Fe Fe’ P N 

n=1 n’=4/3 

M’ 

Pupila 

 
Figura 3- 13 Esquema do olho reduzido. 

 
 

Na versão de Emsley a potência Fe é tida como exactamente 60 D e o valor de n ’ igual a 4/3. As 
duas distâncias focais fe e f ’e podem ser calculadas através de: 
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Donde 
 

mm 67.166010001000 −=−=−== eee FPFf  
e 

mm 22.2260340001000 +=×=′′=′=′ eee FnFPf  
 
como ( ) rnnF −′= , então o raio de curvatura da superfície refractora vem igual a +5.56 mm.  

No caso de uma única superfície de refracção, os dois pontos principais coincidem um com o outro 
e com o vértice da superfície, ao mesmo tempo que os dois pontos nodais coincidem um com o outro e 
com o centro de curvatura da superfície. A linha que passa por P e N é o eixo óptico, assumindo-se que a 
fóvea se encontra nessa mesma linha (na intersecção do eixo óptico com a retina), sendo então o eixo 
óptico também eixo visual. 

Por conveniência a pupila do olho reduzido é considerada como estando centrada no vértice da 
superfície de refracção, e as pupilas de entrada e de saída coincidem com a pupila do olho. Na figura 3-13 
pode observar-se o esquema do olho reduzido enquanto que na figura 3-14 observa-se a sobreposição do 
olho esquemático de Gullstrand–Emsley com o olho reduzido. Conforme se pode observar o ponto 
principal do olho reduzido está situado entre os dois pontos principais do olho esquemático. 
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Figura 3- 14 Comparação do olho esquemático de Gullstrand–Emsley com o olho reduzido. 

 
 

3.10  A imagem retiniana 
 
Antes de nos debruçarmos sobre as características da imagem retiniana, convém fazer a distinção entre 
imagem retiniana que pode ser desfocada ou focada conforme existam ou não problemas de visão e a 
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imagem óptica que é a imagem focada formada pelo sistema refractor do olho como se não existisse 
retina. 

Conhecendo-se os dados necessários, a posição e a altura da imagem óptica pode ser calculada 
algebricamente com base nas equações deduzidas no capítulo 1. 

Se o objecto estiver no infinito a sua imagem forma-se no plano do 2º foco principal. O seu 
tamanho depende do ângulo subtendido pelo objecto. Por exemplo na figura 3-15, os raios provenientes 
do ponto Q situado a uma grande distância, estão inclinados de um ângulo u relativamente ao eixo óptico 
e são focados no ponto Q’ pertencente ao plano de Fe’. O raio que passa pelo ponto nodal não sofre 
desvio continuando na mesma direcção, ao passo que o ponto que passa pelo ponto principal é desviado 
em direcção ao eixo, formando um ângulo u ’ com ele. Dessa forma teremos que 

 
unun sinsin =′′  

 
Como 1=n  e considerando os ângulos pequenos teremos então que nuuuun ′=′=′′   é isto  . 
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Figura 3- 15 Construção da imagem no olho reduzido para um objecto no infinito. 

 
 
Como da figura efhu ′′−=′  vem que 
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onde Fe é a potência do olho reduzido. Nesta última expressão h ’ vem em metros e u em radianos. 
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Capítulo 4  
 

O Olho Esquemático 
 
 
 

4.1 Introdução 
 
O objectivo do olho esquemático é fornecer uma base para estudos teóricos do olho como um 
instrumento óptico. No desenho de um tal olho as complexidades que não tiverem importância 
fundamental devem ser ignoradas. As simplificações devem no entanto variar de acordo com os 
diferentes campos de investigação. Por exemplo ao substituir-se a córnea por uma única superfície de 
refracção, não se afecta o tamanho da imagem retiniana final mas torna-se o esquema inadequado para 
o estudo das imagens de Purkinje.  

Existem vários esquemas do olho com diferentes dimensões consoante o seu autor. Temos como 
exemplos o olho esquemático de Gullstrand (1909), o olho esquemático de Swaine (1921), o olho 
esquemático de Le Grand (1945), o olho esquemático de Ivanoff (1953), etc. Os primeiros esquemas 
surgiram por volta de 1850, e para o mesmo autor existem por vezes várias versões de olhos 
esquemáticos. No que diz respeito às potências dos olhos esquemáticos, ela variou entre +67 D e +58.64 
D para o estado não acomodado chegando às +70.6 D no estado acomodado. 

Gullstrand propôs dois olhos esquemáticos representando extremos opostos. A versão nº 1 
apresenta seis superfícies de refracção, enquanto que a versão nº 2 consiste de uma única superfície 
para a córnea e uma lente cristalino fina. Tal como outros autores Gullstrand propôs para cada uma das 
suas versões, dois modelos correspondentes ao estado não acomodado e ao estado acomodado, 
respectivamente. Na versão nº 1 a potência no estado relaxado é de +58.64 D e no estado acomodado é 
de +70.57 D. Para a versão nº 2, o olho simplificado apresenta uma potência de +59.74 D no estado não 
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acomodado e +70.54 D no estado acomodado. Ambos os olhos têm o mesmo comprimento axial, 24 mm, 
em que o nº 1 tem +1.00 D de hipermetropia enquanto que o nº 2 é emétrope.  

Para fins gerais, o esquema do olho com três superfícies (de Listing) torna-se sem dúvida o 
melhor, no entanto a versão inventada por Emsley, com base nos dados de Gullstrand, foi muito bem 
aceite, razão pela qual se utiliza essa versão para o olho esquemático.  

Outras versões de olhos esquemáticos foram propostos por outros autores tais como Le Grand e 
Ivanoff, no entanto as diferenças entre os diferentes olhos esquemáticos é muito ligeira e sem grandes 
consequências. 

 
 

4.2 A córnea 
 

O primeiro olho esquemático de Gullstrand apresenta ambas as superfícies da córnea, com raios 
de curvatura de +7.7 mm e +6.8 mm, respectivamente e a espessura axial é de 0.5 mm. O índice de 
refracção da substância que compõe a córnea é de 1.376 e o índice de refracção do humor aquoso é de 
1.336. Estes valores dão para a potência da superfície frontal 

 

D83.48
1

12
1 +=

−
=

r
nn

F  

 
onde n2 e n1 representam os índices de refracção da substância da córnea e do ar respectivamente, e r1 é 
o raio de curvatura da primeira superfície da córnea. E para a potência da superfície posterior 
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onde n3 e n2 representam os índices de refracção do humor aquoso e da substância da córnea 
respectivamente, e r2 é o raio de curvatura da segunda superfície da córnea. Então a potência 
equivalente do olho vem 
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onde t representa a espessura da córnea. A distância d do primeiro ponto principal ao vértice da 
superfície frontal é dado por 
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enquanto que a distância d ′ do segundo ponto principal ao vértice da segunda superfície é dado por 
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 Assim, ambos os pontos principais estão à frente da córnea. O primeiro a 0.05 mm e o segundo a 
0.051 mm do vértice frontal da córnea. Isto significa que eles quase que coincidem um com o outro e com 
a primeira superfície da córnea. Portanto a simplificação por uma única superfície para a córnea é 
opticamente legítima. 
 
 

4.3 O cristalino 
 

Para os fins do olho esquemático, a lente cristalino com as suas complicadas variações no índice de 
refracção, tem de ser substituída por alguma coisa muito mais simples. No seu primeiro olho 
esquemático, Gullstrand representou o cristalino matematicamente, baseando-se na aproximação que se 
mostra na parte superior da figura 3.14. Nesta aproximação o cristalino consiste de um núcleo homogéneo 
com índice de refracção 1.406, rodeado por um córtex com índice de refracção 1.386. Tanto o humor 
aquoso como o humor vítreo são considerados como tendo um índice de refracção de 1.336. Os raios de 
curvatura das quatro superfícies refractoras são +10 mm, +7.911 mm, -5.76 mm e -6 mm respectivamente, 
enquanto que as espessuras axiais são 0.546 mm, 2.419 mm e 0.635 mm, dando uma espessura total de 
3.6 mm. A potência equivalente do sistema é de +19.11 D, e os pontos principais estão a 2.080 e 2.205 
mm do pólo anterior da lente, que está a 3.6 mm do vértice corneal anterior. 

Se o cristalino for concebido como um elemento homogéneo biconvexo com raios de curvatura e 
espessuras iguais às anteriores (ver parte inferior da figura 3.14), para obtermos a mesma potência 
equivalente de +19.11 D, temos que ter um índice de refracção de 1.409. Os pontos principais estão agora 
a 2.159 mm e 2. 305 mm do pólo anterior. 

Em 1936 Emsley sugeriu a variação do índice de refracção do cristalino para 1.416 e do humor 
aquoso para 4/3, enquanto mantinha fixos os valores para os raios de curvatura externos e para a 
espessura ao centro do cristalino, vistos no primeiro olho esquemático de Gullstrand. Estas variações 
aumentam a potência equivalente do cristalino para +21.76 D, fazendo ao mesmo tempo com que a 
potência equivalente do olho como um todo, esteja muito próxima do seu valor médio mais provável. 
 
 
 
 
 



  O Olho Esquemático 

- 85 - 

4.4 O olho esquemático de Gullstrand – Emsley 
 

4.4.1 Dados gerais 
 
As modificações introduzidas por Emsley consistiram em remover o núcleo do cristalino do primeiro olho 
esquemático de Gullstrand e substituir a córnea por uma única superfície no segundo olho de Gullstrand. 
As separações axiais e os raios de curvatura permanecem inalterados, mas o índice de refracção do 
humor aquoso e do cristalino passaram a ser de 4/3 e 1.416, respectivamente. 

Na tabela 4-1 temos todos os valores para este olho esquemático, quando o olho está relaxado e 
quando está acomodado, todos as dimensões estão em milímetros e as potências em dioptrias. 

 

4.4.2 Cálculo de constantes ópticas 
 
Para o olho esquemático em geral, a aproximação convencional é primeiro determinar a potência 
equivalente da córnea e a posição dos seus pontos principais, a partir das expressões normais. Depois, a 
potência equivalente do cristalino e os seus pontos principais determinam-se da mesma forma. Os dois 
sistemas são depois combinados através da expressão 
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onde d é a distância de separação entre os dois sistemas. Neste caso d é medido a partir do segundo 
ponto principal da córnea até ao primeiro ponto principal do cristalino. Quando a córnea é representada 
por uma única superfície, os cálculos ficam mais simplificados já que a potência equivalente da córnea é 
a de uma única superfície e os dois pontos principais coincidem com o vértice. A figura 4-1 ilustra os 
pontos principais e os componentes do olho esquemático de Gullstrand-Emsley no não acomodado.  

 
 

A1 A2 A3 

d1 d2 

e2´ e2 
e´ e 

P´1 P1, 
P´ P P´2 P2 

n2 n1 n4 n3 

 
Figura 4- 1 Representação da posição dos pontos principais e dos componentes do olho esquemático de 
Gullstrand-Emsley. 
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 Os resultados são os seguintes: 
 
Potência das superfícies 
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Potência equivalente do cristalino (Fc) 
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Pontos principais do cristalino (Pc e Pc’) 
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Potência equivalente do olho (F0) 
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Posição dos pontos principais do olho (P, P′) 
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 mm852.122332211 +=′′+′++=′ PPPAAAAAPA  
 
Distâncias focais equivalentes do olho (f0, f0’) 
 
 mm53.16010 −=== FnPFf  
 
 mm043.22040 +==′′=′ FnFPf  
 
Posição dos pontos nodais (N, N′) 
 
Os pontos nodais de qualquer sistema refractante estão posicionados de uma forma tal que FPFN =′′  e 

PPNN ′=′ . Isto dá 
 
 mm061.71 +=NA  e  mm362.71 +=′NA  
 
Comprimento total de um olho emétrope (A1F′) 
 
 mm895.2311 =′′+′=′ FPPAFA  
 
 

4.5 O olho esquemático acomodado 
 
Quando o olho esquemático acomoda, ambas as superfícies do cristalino, mas especialmente a 
superfície anterior torna-se mais curva. Ao mesmo tempo, a espessura axial aumenta e a lente move-se 
ligeiramente em direcção à câmara anterior. No estado de acomodação máximo, a espessura axial 
aumenta de 0.4 mm passando de 3.6 a 4.0 mm e a profundidade da câmara anterior diminui da mesma 
medida (0.4 mm) passando a 3.2 mm. O efeito da acomodação na posição dos pontos principais do olho é 
pequeno. Ambos se deslocam de 0.25 mm em direcção à retina, no seu estado de acomodação máximo. 
Ao mesmo tempo ambos os pontos nodais se movem de 0.5 mm em direcção à córnea. Na figura 4-2 
apresentam-se os movimentos relativos dos pontos principais e dos pontos nodais quando o olho está 
relaxado e quando está acomodado. 
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Acomodado 

Não Acomodado 

N N´ 
A3 A1  A2 

P P´ 

 
Figura 4- 2 Comparação das posições dos pontos principais e dos pontos nodais do olho esquemático de 
Gullstrand-Emsley no estado não acomodado e em total acomodação. 
 
 

No estado de acomodação máximo a potência do cristalino aumenta de 10.55 D, passando de 
+21.76 D para + 32.31 D, enquanto que a potência equivalente do olho aumenta só de 9.24 D. 

 
Tabela 4- 1 Dados para o olho esquemático de Gullstrand-Emsley 
QUANTIDADE SÍMBOLO RELAXADO ACOMODADO 

Raios de curvatura 
- Córnea 
- Cristalino 
     - 1ª superfície 
     - 2ª superfície 

 
r1 
 

r2 
r3 

 
+ 7.8 

 
+ 10.00 
- 6.00 

 
+ 7.8 

 
+ 5.00 
- 5.00 

Distâncias axiais 
- Profundidade da câmara anterior 
- Espessura do cristalino 
- Profundidade do corpo vítreo 

 
d1 
d2 
d3 

 
3.60 
3.60 

16.69 

 
3.20 
4.00 

16.69 
Comprimento axial total  23.89 23.89 
Índices de refracção médios 
- Humor aquoso 
- Cristalino 
- Humor vítreo 

 
n2 
n3 
n4 

 
1.3333 
1.4160 
1.3333 

 
1.3333 
1.4160 
1.3333 

Potência das superfícies 
- Córnea 
- Cristalino 
     - 1ª superfície 
     - 2ª superfície 

 
F1 
 

F2 
F3 

 
+ 42.73 

 
+ 8.27 

+ 13.78 

 
+ 42.73 

 
+ 16.54 
+ 16.54 

Potências equivalentes 
- Cristalino 
- Olho 

 
Fc 
Fo 

 
+21.76 
+ 60.49 

 
+32.31 
+ 69.73 

Distâncias focais equivalentes do olho 
- 1ª distância focal 
- 2ª distância focal 

 
f0 
f′0 

 
- 16.53 
+ 22.04 

 
- 14.34 
+ 19.12 

Distâncias do vértice corneal 
- 1º ponto principal 
- 2º ponto principal 
- 1º ponto nodal 
- 2º ponto nodal 
- pupila de entrada 
- pupila de saída 
- 1º foco principal 
- 2º foco principal 

  
+ 1.55 
+ 1.85 
+ 7.06 
+ 7.36 
+ 3.05 
+ 3.69 
- 14.98 
+ 23.89 

 
+ 1.78 
+ 2.13 
+ 6.56 
+ 6.91 
+ 2.67 
+ 3.25 
- 12.56 
+ 21.25 

Estado refractivo K 0 - 8.47 
Distância do ponto próximo ao vértice corneal   - 116.2 
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4.6 Relações paraxiais 
 

As equações fundamentais eFLL +=′ , eFKK +=′  e ( ) ( )KKhLLLhL ′=′′=′   ou  , aplicadas ao olho 

esquemático dão as distâncias l e l ′ ou k e k ′ medidas a partir do primeiro e segundo pontos principais, 
respectivamente, tal como se mostra na figura 4-3. É importante lembrar que no olho esquemático a 
distância k ′ não representa o comprimento axial total, tal como no olho reduzido. 
 

 

PR 

k 

 

l l ’ 

k ’ 

B ’ 
B 

P P ’ 
M ’ 

 
Figura 4- 3 Medição das distâncias conjugadas a partir dos pontos principais do olho. 

 
 

4.7 As imagens de Purkinje 
 

4.7.1 Considerações teóricas 
 
As imagens de Purkinje são reflexões a partir das várias superfícies refractoras do olho. Quando a luz 
incide numa superfície refractora, existe uma pequena parte do feixe incidente que é reflectido. A luz 
reflectida é plano-polarizada com um grau de polarização determinado pelo ângulo de incidência. Para 
ângulos de incidência até 15º o grau de polarização é desprezável e a reflectância pode ser determinada 
através da expressão 
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onde n1 e n2 são os índices de refracção do primeiro e segundo meios respectivamente. 

A luz que penetra no olho sofre as primeiras reflexões nas superfícies da córnea e depois nas 
superfícies do cristalino. É usual designar as imagens produzidas por estas reflexões por Purkinje I, II, III e 
IV, onde os números em romano designam as superfícies refractoras pela ordem em que aparecem. 

Para estudar Purkinje I (também chamada reflexo corneal) podemos observar a superfície anterior 
da córnea como um espelho convexo. Qualquer espelho convexo dá lugar a uma imagem virtual, direita e 
diminuída de um objecto real. A imagem cresce à medida que o objecto se aproxima do espelho. Se o 
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raio anterior da córnea for +7.8 mm, o plano focal está situado a metade desta distância, isto é, 3.9 mm 
atrás do vértice, dando à superfície uma potência catóptrica de -256 D. Isto é tão elevado que Purkinje I 
permanece substancialmente no plano focal enquanto a distância for muito pequena. 

Para formar as restantes imagens de Purkinje, a luz incidente é em primeiro refractada até às 
superfícies que vão actuar como espelhos e depois da reflexão é refractada mais uma vez através dessas 
superfícies pela ordem inversa antes de emergir do olho.  

A primeira imagem de Purkinje, Purkinje I, (produzida por reflexão na superfície anterior da 
córnea) é a imagem mais intensa devido à grande diferença entre os índices de refracção do ar e da 
substância da córnea. Está situada aproximadamente no plano pupilar e o seu tamanho é intermédio 
entre as imagens produzidas pelas superfícies do cristalino. 

A segunda imagem, Purkinje II, (produzida por reflexão na superfície posterior da córnea) tem 
uma intensidade muito fraca devido a que a diferença entre os índices de refracção do material da córnea 
e do humor aquoso é muito pequena. Além disso está mascarada pela primeira imagem que se forma 
muito perto dela já que o raio de curvatura da superfície posterior é ligeiramente menor que o da 
superfície anterior. Isto faz com que esta imagem passe desapercebida. O seu tamanho é também 
ligeiramente menor. 

A terceira imagem, Purkinje III, (que se forma sobre a superfície anterior do cristalino que também 
actua como espelho convexo) é a maior de todas estas imagens visto que o raio de curvatura da 
superfície anterior do cristalino é maior que os da córnea. A sua intensidade luminosa é a mais débil 
devido a factores como: 

(a) ser a de maior tamanho. 
(b) não existir muita diferença entre os índices de refracção do humor aquoso e do cristalino. 
(c) a superfície ser menos lisa que a da córnea. 
(d) a existência de diferentes índices de refracção no cristalino. 
 

Durante a acomodação esta imagem torna-se mais pequena já que o raio de curvatura diminui, 
isto é, aumenta a curvatura da superfície anterior do cristalino. 

A quarta imagem, Purkinje IV, (formada por reflexão na superfície posterior do cristalino) 
diferencia-se das outras já que é formada por uma superfície côncava. A imagem é então real e invertida. 
A sua intensidade é maior que a anterior mas o seu tamanho é menor que a da primeira imagem de 
Purkinje (Purkinje I). Durante a acomodação esta imagem sofre pouca modificação. 

Pelas suas características as imagens de Purkinje servem para calcular a posição exacta e o raio 
de curvatura das superfícies reflectoras. 
 

4.7.2 Dimensões e propriedades 
 
O olho esquemático de Le Grand é apropriado para o cálculo das imagens de Purkinje, visto incorporar as 
quatro superfícies responsáveis por elas. Le Grand calculou as posições e os tamanhos relativos das 
imagens, para uma distância objecto de 500 mm. Os seus resultados podem ser observados na Tabela II, 
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junto com os cálculos similares para um objecto no infinito. As dimensões do olho esquemático de Le 
Grand são: 

 
Olho relaxado 
 Raios de curvatura  +7.8; + 6.5; + 10.2; - 6.0 mm. 
 Separações axiais  0.55; 3.05; 4.0 mm. 
 Índices de refracção  1; 1.3771; 1.3374; 1.42; 1.336.  

 
Olho acomodando 6.96 D 
 Raios de curvatura + 7.8; + 6.5; + 6; - 5.5 mm. 
 Separações axiais  0.55; 2.65; 4.5 mm. 
 Índices de refracção  1; 1.3771; 1.3374; 1.42; 1.336.  

 
Tabela 4- 2 Imagens de Purkinje calculadas do olho esquemático de Le Grand. 

Imagem 
Nº 

Brilho 
relativo 

Olho não acomodado 
Objecto distante        Objecto a 500 mm 

Olho acomodado (6.96 D) 
Objecto distante 

Posição  
imagem 

Tamanho 
relativo 

Posição  
imagem 

Tamanho 
relativo 

Posição da 
imagem 

Tamanho 
relativo 

I 1 +3.90 1 +3.870 1 +3.900 1 

II 0.01 +3.605 0.820 +3.585 0.821 +3.605 0.820 

III 0.008 +10.726 1.971 +10.610 1.945 +6.200 1.102 

IV 0.008 +4.625 -0.763 +4.325 -0.762 +5.237 -0.773 

 
 

Dado um objecto relativamente distante, o tamanho da imagem formada por reflexão é 
proporcional à distância focal do espelho, que é metade do raio de curvatura. Se o objecto subtende um 
ângulo u (em radianos), a altura h ′ da imagem é dada por 
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Se kh′  designar a altura da k-ésima imagem de Purkinje e kr ′  for o raio de curvatura do espelho 

equivalente correspondente, então 
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4.7.3  Centragem óptica do olho 
 
O olho não é um sistema óptico centrado, não possui um verdadeiro eixo óptico. A imagem do ponto de 
fixação forma-se na fóvea, ao redor da qual se ordenam todos os objectos do campo visual. A fóvea não 
está situada sobre o eixo óptico, mas sim aproximadamente a 1.25 mm abaixo dele no lado temporal. É 
esta parte da retina que se utiliza para a visão nítida. 

Quando observamos um objecto não o fazemos directamente segundo o eixo óptico, mas sim ao 
longo da linha que une o objecto (ou o ponto de fixação) à fóvea e que passa pelo ponto nodal. A esta 
linha damos o nome de eixo visual. 

 
 

 • • •• 
M′ 

NN′ 
EE′ 

 
Figura 4- 4 Eixo visual através das pupilas de entrada e de saída e o eixo nodal através dos pontos nodais 
de um olho emetrópico (os dois eixos num emétrope são paralelos). 
 

 

 • • •• 
M′ 

NN′ 
EE′ 

PR  
Figura 4- 5 Olho miópico. As linhas que saem da fóvea e passam pelas pupilas de saída e pelos pontos 
nodais interceptam-se no ponto remoto. 
 
 

No caso da emétropia os raios são paralelos para visão longe, enquanto que para o caso da 
miopia os raios cruzam-se no ponto remoto, que por definição é o ponto conjugado com a fóvea. 

O ângulo entre o eixo óptico e o eixo visual é denominado eixo alfa. Este ângulo é tomado como 
positivo quando o eixo visual, no espaço objecto, está no lado nasal do eixo óptico. 

Um outro eixo é o eixo pupilar, que pode ser definido como a linha que passa pelo centro da pupila 
e que incide na córnea normalmente. Este raio tem de passar então normalmente pelo centro de 
curvatura desta superfície. Tipicamente a pupila está descentrada nasalmente de 0.25 mm do eixo óptico, 
em ambos os casos tanto a pupila de entrada como a pupila de saída estão no lado nasal do eixo óptico. 
Mesmo um descentramento de 0.25 mm gera um ângulo de mais ou menos 3º entre o eixo óptico e o eixo 
pupilar. 
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Figura 4- 6 Os eixos óptico, pupilar e visual do olho. 

 
 

O ângulo kapa (ou lambda), é o ângulo entre o eixo pupilar e o eixo visual. Mais recentemente o ângulo 
kapa é utilizado para denotar o ângulo entre o eixo pupilar e a linha principal de fixação. 
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Capítulo 5  
 

Acuidade Visual 
 
 

5.1 Introdução 
 
Visão é o processo através do qual um organismo vê e inclui todos os estádios desde os estímulos físicos 
que atingem o olho até à percepção mental. A quantidade de informação necessária por um organismo, 
varia de espécie para espécie adaptando-se o sistema visual a essa situação.  
 O olho humano é capaz de muitas tarefas envolvendo diferentes complexidades de visão. Essas 
tarefas podem ser classificadas segundo os seguintes itens: 
 

1. Percepção da luz, por exemplo, o patamar de visão no olho normal ou a resposta de um olho 
doente. 

2. Descriminação, ou capacidade do sistema visual para distinguir um objecto do seu fundo. 
3. Visão de formas e reconhecimento, tal como a capacidade para identificar letras e palavras. 
4. Resolução ou a capacidade de ver um detalhe. 
5. Localização, por exemplo, observando que um objecto está situado ao lado de um outro 

objecto. 
6. Tarefas maiores onde o sistema visual estimula outras respostas, por exemplo, resposta 

motora. 
 
Os dois aspectos mais importantes do ponto de vista clínico são a visão das formas e a resolução. 
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5.2 Descriminação de linhas 
 
A capacidade do olho perceber que um objecto está separado do seu fundo, depende em parte das 
luminâncias relativas do objecto e do fundo. Se o fundo for muito escuro, o objecto é visto, sempre que a 
iluminação da sua imagem retiniana exceda o limiar de luminância do olho para aquele nível de 
adaptação. A capacidade de ver um objecto escuro contra um fundo iluminado, está dependente de um 
limiar diferente. Nestas condições o contraste na imagem de um objecto grande é semelhante ao 
contraste no objecto (figura 5-1). À medida que o objecto diminui de tamanho, o contraste da imagem 
diminui, em parte devido a imperfeições o sistema óptico do olho. 
 

Objecto 

Luminância 
Objecto (%) 

Luminância 
Imagem (%) 

0 

0 

100 

100 

 
 

Figura 5 - 1 Transferência de contraste num sistema óptico. 
 
 

Um objecto escuro será percebido sempre que a variação na iluminação retiniana exceda o limiar 
da diferença de luminância, LLΔ . Esta fracção conhecida como fracção de Weber-Fechner, varia com a 
luminância do fundo e atinge o valor mínimo de 2% para níveis fotópicos moderados. Assim, sempre que 
a imagem retiniana de um objecto escuro cause uma diminuição da iluminação na retina cerca de 2%, é 
provável que esse objecto se veja. Sob boas condições, uma linha subtendendo 0.5 segundos de arco 
pode ser vista, sempre que esteja suficientemente longe (por exemplo, uma linha de telefone), para a sua 
imagem cobrir muitos receptores. 

Se o objecto apresentar um contraste reduzido com o fundo, tal como uma linha cinzenta num 
fundo luminoso, a variação na iluminação retiniana tem de exceder o limiar da diferença de luminância 
numa área que seja suficiente para se conseguir a descriminação. 
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5.3 Resolução 
 

5.3.1 Teoria dos receptores 
 

 
 

Figura 5 - 2 Esquema do arranjo dos fotoreceptores da retina. 
 
 
Na fóvea, os cones têm um diâmetro de 1.5 μm aproximadamente e estão separados de aresta a aresta 
por 0.5 μm. Então a separação efectiva entre os centros dos cones é de aproximadamente 2 μm. 
Suponhamos que o olho está a observar duas fontes pontuais de luz muito próximas. Se as suas imagens 
estiverem em dois cones vizinhos, elas serão percebidas como uma única fonte de luz. Contudo, se 
existir um cone não estimulado entre dois iluminados pelas imagens, então é provável que exista 
resolução suficiente para distinguir os dois pontos luminosos. 
 

 

  
 4 μm 

2 μm 
  

 

 

 

 
 

Figura 5 - 3 Teoria da resolução dos receptores. 
 
 

Assumindo que o ponto nodal está situado a 11.67 mm em frente da retina, então temos um 
limite teórico para a resolução de aproximadamente 49 segundos de arco. 

Esta análise simplificada só é válida se cada cone puder transmitir um impulso em separado, o 
que quer dizer que existe pelo menos uma fibra nervosa para cada cone da fóvea. Na periferia da retina, 
cada fibra nervosa é estimulada por vários receptores donde o que é importante neste caso são as 
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dimensões do campo receptor correspondente a cada fibra nervosa, e não o tamanho dos receptores 
individuais. 

 
 

5.3.2   Teoria ondulatória 
 
A teoria ondulatória da luz prediz que, mesmo com um sistema óptico perfeito, a imagem de um ponto 
objecto não é um ponto, mas sim uma mancha com uma área finita devida ao fenómeno de difracção da 
luz provocado pelas margens do sistema óptico. Para aberturas circulares, essa imagem toma a forma de 
um disco central brilhante rodeado de anéis claros e escuros alternados. 

O disco central contém cerca de 84% da luz existente no padrão de difracção e é chamado disco 
de Airy. No olho, o ângulo subtendido por este disco no ponto nodal (ω) é dado pela expressão 
 

 
D
λω 44.2

=  

 
onde D representa o diâmetro pupilar em metros e λ representa o comprimento de onda da luz também 
em  metros. 

Se tivermos duas fontes pontuais adjacentes muito próximas, vai haver sobreposição dos dois 
padrões de difracção gerados pelas fontes, cada um contribuindo para a iluminância da imagem retiniana 
na área de sobreposição.  

Na figura 5-4 mostra-se as curvas de iluminância relativa para os discos de Airy individuais (a 
tracejado), e o resultado da sobreposição das duas (a cheio). 

 
 100 

100 

C 

B 
A 

Q 

 
Figura 5 - 4 Discos de Airy com diferentes separações. 
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Por exemplo no ponto Q a iluminação devida ao disco de Airy esquerdo é proporcional a QA 
enquanto que a parte devida ao outro disco de Airy é proporcional a QB. A soma de QA e QB é igual a 
QC, que determina o ponto correspondente na curva de sobreposição. Se os dois padrões de difracção 
estiverem suficientemente separados, a curva da iluminância total apresenta dois picos com uma 
depressão no centro. À medida que os pontos objecto se vão aproximando um do outro, assim as suas 
imagens e eventualmente os dois picos aparecerão juntos num único centro brilhante. Nestas condições 
é impossível ver os dois objectos separados, eles não se conseguem resolver. 

Segundo um critério sugerido por Rayleigh, podem-se resolver dois objectos desde que o pico 
central do segundo disco de Airy coincida com a parte extrema do primeiro disco de Airy.  

Este critério estabelece um valor para minθ , ângulo de resolução mínimo do olho, dado por 
 

 (rad)   22.1
min D

λθ =    

 

5.3.3 Resolução de uma rede e acuidade 
 
Vamos estudar o caso de uma rede formada por linhas paralelas alternadamente claras e escuras (figura 
5-5). Normalmente as linhas claras têm as mesmas dimensões das linhas escuras. Uma tal rede é 
conhecida como rede de Foucault ou rede onda quadrada, já que o contraste se altera rapidamente na 
mudança de claro para escuro e vice-versa. 

O limite de resolução para uma rede de onda quadrada é, normalmente expresso como o ângulo 
subtendido em segundos de arco para um elemento da rede (uma linha escura mais uma clara). Se as 
linhas têm a mesma largura, o tamanho de um elemento da rede é o mesmo em qualquer parte dessa 
rede. Um valor típico para o limite de resolução de uma rede quadrada é de 80 a 90 segundos de arco. 

 
 

 
Figura 5 - 5 Rede de Foucault. 

 
 
De um modo geral a acuidade visual é inversamente proporcional ao ângulo de resolução mínimo. 

Então, se A for o ângulo subtendido pelo detalhe básico do teste objecto mais pequeno discernível, a 
acuidade visual V pode ser definida como AkV = , onde k é uma constante arbitrária. Esta é a base da 

notação decimal para a acuidade visual, onde A é expresso em minutos de arco e o valor de k é unitário. 
A acuidade visual pode ser expressa sob a forma da acuidade da espessura de uma linha, e a 

unidade será a recíproca de minutos de arco. 
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5.3.4 Resolução e tamanho da pupila 
 
A difracção produzida pelos bordos da pupila fornece o ângulo visual mínimo com o qual se consegue 
resolver dois objectos, como função inversa do diâmetro da pupila. Então, para pupilas com grandes 
diâmetros, o disco de Airy é pequeno e o limite de resolução tem também se ser pequeno. Inversamente, 
pupilas pequenas (em diâmetro) resultam em grandes ângulos para o limiar de resolução. Embora esta 
relação seja verdadeira para sistemas ópticos livres de aberrações, as aberrações dos olhos reduzem 
esta performance, para pupilas com diâmetros grandes. Na figura 5-6 mostra-se a resolução de uma rede 
de Foucault como função das dimensões da pupila. A linha recta a tracejado representa a performance 
predita pelo critério de Rayleigh, e a linha curva a cheio representa a performance do olho tendo em 
conta as aberrações existentes.  
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Figura 5 - 6 Resolução da rede de Foucault como função das dimensões da pupila. 

 
 

Observa-se que a performance do olho segue a linha de variação dada pelo critério de Rayleigh 
até pupilas com diâmetro cerca de 1.5 mm, e depois desvia-se dessa linha devido à presença de 
aberrações no sistema visual. A melhor acuidade, equivalente a um limite de resolução de 77 segundos 
de arco, ocorre para pupilas com diâmetro de 3 mm. Acima deste diâmetro a resolução torna-se pobre em 
condições fotópicas, porque os efeitos das aberrações começam a ser predominantes no sistema. Em 
condições escotópicas normais, um aumento nas dimensões da pupila dá lugar a um aumento na 
iluminação retiniana, o que faz aumentar a acuidade. 

 

5.3.5   Resolução e iluminação 

5.3.5.1 Dimensões da pupila fixas 

 
A retina funciona mais eficientemente para elevados níveis de iluminação, tornando mais fácil ler em boa 
luz do que em baixas iluminações. Contudo existem outros factores a considerar. O diâmetro da pupila 
altera-se com o nível de iluminação, por isso em medições científicas fixa-se o diâmetro da pupila.  
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A iluminância retiniana é dada em trolands. Como a iluminância da imagem retiniana varia com o 
quadrado do diâmetro da pupila, não é suficiente dizer qual a luminância do objecto em teste. Troland 
sugeriu por isso, uma unidade baseada num olho com um área pupilar de um milímetro quadrado, que 
observe uma superfície de luminância de uma candela por metro quadrado. 

De notar que a iluminância da retina é influenciada pela transparência dos meios que compõe o 
olho e que a luz que entra pela periferia da pupila não é tão eficiente no estímulo dos cones retinianos 
como a luz que passa pelo centro da pupila, variação conhecida como efeito de Stiles-Crawford. 

 

5.3.5.2 Diâmetro da pupila variável 

 
Uma aproximação alternativa é permitir que a pupila retome ao seu tamanho natural à medida que a 
iluminação do teste objecto varia. Embora esta situação dê menos informação relativamente à fisiologia 
da retina, permite ter uma melhor ideia sobre o que acontece em condições normais. 

A acuidade neste caso aumenta com o aumento da luminância até 3400 cd m-2, depois do que a 
resolução diminui. Além disso a acuidade aumenta com o aumento do espaço circundante. O aumento é 
muito mais marcado para espaços com dimensões acima dos 6º. Por exemplo, para a maioria dos 
pacientes, se uma única letra é apresentada iluminada com um fundo escuro, a acuidade visual é menor 
do que a mesma letra inserida num espaço circundante iluminado. 

 
 

5.4 Visão e acuidade visual em prática clínica 
 

5.4.1 Introdução 
 
Nas secções anteriores, a resolução do olho foi considerada relativamente a um par de fontes e linhas de 
uma rede. A resolução do olho pode ser também considerada, tendo em conta os anéis de Landolt e 
alguns caracteres (ver figura 5-7). Embora sejam testes objectos úteis para o estudo científico não são, à 
excepção dos anéis de Landolt e dos caracteres, satisfatórios para o trabalho clínico. Fontes pontuais e 
redes não representam o tipo de detalhe que um paciente normal vê. É portanto útil utilizar como testes 
objectos, caracteres com os quais o paciente esteja familiarizado. Se forem utilizados símbolos de várias 
dimensões, os pequenos caracteres serão vistos por pessoas com boa visão, enquanto que pacientes 
com baixa visão necessitam de caracteres maiores para verem. 
 

 

1´ 5´ 5´ 1´ 

 
Figura 5 - 7 E de Snellen e C de Landolt 
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Os caracteres que se utilizam mais frequentemente são letras maiúsculas, embora se utilizem 
também números e outros símbolos. 

Normalmente em vez de se utilizar o termo limite de resolução, utilizam-se os dois termos que se 
seguem: 

1. Acuidade Visual - determinada a partir da linha de letras ou de símbolos mais pequena 
existente na carta de testes, que pode ser lida pelo paciente depois de os defeitos de focagem, que não 
sejam devidos a aberrações, terem sido corrigidos. 

2. Visão - determinada a partir das dimensões da linha de letras ou de símbolos mais pequena 
da carta de testes que pode ser lida pelo paciente a olho nu. 
 

5.4.2 Distância para cartas de testes e acuidade 
 

Em testes de visão distante, a distância de teste deve ser suficientemente grande para não estimular a 
acomodação. O valor aceitável em muitos países é de 6 metros, mas na maioria dos países Europeus a 
distância utilizada é de 5 metros.  

As cartas testes para adultos apresentam, de uma maneira geral letras maiúsculas estilizadas que 
foram desenhadas de maneira a preencherem uma rede de quadrados unitários. Uma das primeiras 
cartas de testes foi introduzida por Snellen em 1862. 

Consideremos uma letra rectangular tal como o E maiúsculo (figura 5-8). Segundo Snellen esta 
letra pode ser vista por um olho corrigido se a espessura do traço e de cada espaço entre eles 
subtenderem um minuto de arco no olho. O ângulo subtendido por uma tal letra é então de 5 minutos 
verticalmente e 4 a 6 minutos horizontalmente, dependendo do estilo e da letra do alfabeto. 

 
 

 
Figura 5 - 8 Um ângulo subtendido constante requer um aumento da dimensão proporcional à distância. 

 
 

A carta de testes completa contém cerca de 10 linhas de letras numa progressão de tamanhos, 
cada uma designada pela distância a que a altura total de uma letra subtende 5 minutos, com tamanho do 
detalhe subtendendo então 1 minuto de arco. A altura total de uma letra de 6 metros subtende 5 minutos 
de arco a 6 metros. A sua altura deve ser de 8.73 mm, que é a tangente de 5 minutos multiplicada por 
6000. Uma letra de 12 metros subtende 5 minutos a 12 metros, ou 10 minutos a 6 metros, logo a sua altura 
tem de ser o dobro da altura de uma letra de 6 metros e assim sucessivamente. 

A acuidade visual pode ser medida de maneiras diferentes e com várias notações. A base de um 
método que é geralmente aceite é mostrada na figura 5-9, na qual h é a altura total da letra de teste e t é 
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a espessura do traço da letra. Seja d a distância normal de teste, D a distância para a qual o traço da 
letra subtende um ângulo arbitrário A0 e A o ângulo subtendido pela espessura do traço da letra mais 
pequena que pode ser lida, à distância normal de teste. 

 
 

d 
D 

A A0 

h 

y 

 
Figura 5 - 9 Derivação da fracção de Snellen d/D. 

 
 

A acuidade visual V, ou “visus”, pode ser expressa como a razão  
 

 
D
d

dy
Dy

A
A

V === 0  

 
esta razão é conhecida como fracção de Snellen. É escrita, por exemplo, como 6/18, 20/200, etc. A 
fracção de Snellen na notação decimal torna-se equivalente a AV 1=   onde A vem em minutos de arco. 

 

5.4.3 Variação no estilo das letras e legibilidade 
 
Na figura 5-10 pode ver-se que as letras com o estilo sanserif se apresentam mais proporcionadas numa 
rede de 5 x 4 do que numa rede de 5 x 5. Numa rede de 5 x 5, o traço da letra O deve ter uma espessura 
de uma unidade, o espaço central terá um diâmetro de 3 unidades. A mesma letra numa rede 5 x 4 tem 
um espaço central de 2 unidades, que é maior do que os espaços na letra E.  
 

                  
                  
                  
                  
                  
                  
                  

(a) (b) (c)  
Figura 5 - 10 Letras com diferentes estilos, (a) 5x5 serif E, (b) 5x5 sanserif E, (c) 5x4 sanserif E. 

 
 

Devido à variação na estrutura das diferentes letras, mesmo que sejam todas desenhadas de 
modo a preencherem a mesma rede, a sua legibilidade varia. As letras L,T e U, por exemplo, são lidas 
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com maior facilidade do que as letras B ou G. Letras que são semelhantes na sua forma tendem a 
confundir-se umas com as outras, tais como C, D, G, O, Q e também H, K, M, N, W. 
 
 

5.5 Visão através de instrumentos ópticos 
 
Utilizam-se instrumentos ópticos para ajudar na visão quando o ângulo que a imagem subtende é muito 
pequeno para ser resolvido a olho nu, e na astronomia quando a luminância é muito baixa. 

O ângulo de resolução mínimo de um olho perfeito ou livre de aberrações, é limitado por dois 
factores: o primeiro é o disco de Airy formado pelo fenómeno de difracção e o segundo é a sensibilidade 
do sistema neural/retina. Um olho perfeito que tenha uma pupila com diâmetro de 6 mm tem um ângulo 
de resolução mínimo tão pequeno quanto 25 segundos de arco, isto se tivermos em conta só o fenómeno 
de difracção. No entanto isto não sucede já que o sistema neural/retina pode distinguir detalhes tão finos 
quanto essa medida. 
 

5.5.1 Visão com telescópios e prismas binoculares 
 
Consideremos um instrumento cuja objectiva tem uma abertura d. O seu limite de resolução θ para dois 
pontos vizinhos é dado através da equação já vista atrás 
 dλθ 22.1)rad( =  
 
que representa metade do ângulo subtendido do disco de Airy. Se o instrumento tiver um aumento M a 
separação angular θ i de dois pontos na imagem apresentada ao olho é  

 
 ddmm ′=== λλθθ 22.122.1i  

 
onde d ′ representa o diâmetro da pupila de saída (igual a md ). 

O ângulo de resolução mínimo θ o de uma hipotética difracção para um olho limitado pela pupila de 
entrada com diâmetro g é dado por 

 
 gλθ 22.1o =  
logo 
 
 dg ′=oi θθ  
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Se g é mais pequeno que d ′ , θ I é menor que θ o. Isto significa que o aumento do instrumento é 
insuficiente para tirarmos todas as vantagens da abertura da objectiva. Para que θ I  seja maior ou igual 
do que θ o , a pupila de saída não pode ser maior do que a pupila do olho. 
 

5.5.2 Visão com microscópios 
 
O aumento de instrumentos visuais utilizados com objectos próximos é baseado no facto de que o olho 
não acomodado deve ver um objecto de uma distância de 250 mm. Se o ângulo mínimo de resolução do 
observador é θ o (em radianos), a correspondente separação (em milímetros) entre dois objectos pontuais 
resolvidos é  
 
 oh θ250o =  .  
 
então  

 
 oo 0727.0 θ=h  
para uma objectiva de microscópio de abertura numérica NA, a expressão normal é 
 
 NA222.1)mm( λ=h  
 

Para que o olho tire todas as vantagens da resolução superior do instrumento, o seu aumento M 
deve igualar h e ho. Esta condição é satisfeita se 
 oc )NA(215 θ≈= hhM  

 
O diâmetro da pupila de saída dum microscópio, d ′, é dada por 

 
 Md NA500=′  

 
normalmente d ′ é mais pequena que a pupila do olho. 
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Capítulo 6  
 

Ametropias Esféricas 
 
 
 

6.1 Introdução 
 
Um olho não acomodado que foca os raios de um objecto distante na retina diz-se emétrope. Pelo 
contrário quando o olho não acomodado não consegue focar os raios de objectos distantes na retina diz-
se ametrope. Um olho ametrope é um olho que tem um erro refractivo ou de refracção. Como a causa é 
um defeito óptico e não funcional é razoável supor que um método de correcção óptica pode ser 
encontrado.  
 As ametropias podem ser divididas em duas categorias principais: as ametropias esféricas e as 
ametropias cilíndricas. Nas ametropias esféricas o sistema refractivo do olho é simétrico em torno do eixo 
óptico. É capaz de formar uma imagem nítida, mas a retina não está na posição correcta. O comprimento 
axial do olho e a distância focal não correspondem e a visão é afectada. 

 
 

6.1.1 Miopia 
 
Se a imagem nítida é formada antes da retina, o erro resultante da refracção é chamado de miopia. O 
olho miópico pode ser observado como um sistema óptico com excesso de potência para o seu 
comprimento axial. Num olho míope os raios só serão focados na retina se entrarem divergentes no olho. 
Assim, o objecto tem de estar a uma distância finita do olho e quanto maior for o erro refractivo mais perto 
do olho estará o objecto.  
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Figura 6- 1 Olho miópico e formação da imagem de raios de um objecto pontual axial distante. 

 
 

O ponto conjugado com a fóvea do olho não acomodado é chamado ponto remoto (PR). A 
distância desde o ponto principal do olho (P) até ao PR é designado por k. No olho míope o PR encontra-
se à frente do olho, a uma distância finita deste e é negativa devido à convenção de sinais. 
 

 

  Fe Fe’ P N 

n=1 n’=4/3 

M’ 
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MR 

 
Figura 6- 2 Localização do ponto remoto de um olho miópico não acomodado. 

 
 
 Através de um esforço acomodativo, um míope pode focar objectos a distâncias inferiores ao PR, 
mas não a distâncias superiores ao mesmo. O ponto mais próximo do olho até onde se conseguem focar 
os objectos é chamado ponto próximo (PP). Um míope não corrigido possui um espaço de visão nítido 
restrito. Em casos extremos esse espaço pode ser só de alguns centímetros à frente dos olhos. O míope 
consegue focar objectos a distâncias inferiores ao normal e formar imagens retinianas maiores que as 
normais. 
 

6.1.2 Hipermetropia 
 
Se o feixe de raios luminosos que entram no olho for interceptado pela retina antes de chegarem ao 
ponto focal, o erro de refracção resultante é chamado hipermetropia. O olho hipermetrope não 
acomodado, tem uma potência inferior relativamente ao olho normal. O comprimento axial do olho 
hipermetrópico é pequeno quando relacionado com a potência do olho.  
 



  Ametropias Esféricas 

- 107 - 
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Figura 6- 3 Olho hipermetrópico não acomodado e formação da imagem de raios de um ponto objecto axial 
distante. 
 
 

Num olho hipermetrope para que os raios luminosos se foquem na retina têm de entrar no olho de 
forma convergente. Assim, o ponto remoto do olho hipermetrope é virtual porque se encontra situado 
atrás do olho. 
 

 

  P N 

n=1 n’=4/3 

M’ 

Pupila 

MR 

k´ 

k  
Figura 6- 4 Posição do ponto remoto de um olho hipermetrópico não acomodado. 

 
 
 Sem ser corrigido, um olho hipermetrope não consegue formar imagens nítidas na retina, esteja o 
objecto a que distância estiver. No entanto se for possível corrigir o erro refractivo, através de um esforço 
acomodativo, os objectos distantes podem ser focados na retina. 

Dependendo da amplitude de acomodação do olho, um hipermetrope pode conseguir focar 
objectos a uma distância finita do olho, pode só conseguir focar objectos distantes ficando os objectos 
mais próximos desfocados, ou pura e simplesmente pode acontecer que não consiga focar nada. No 
primeiro caso o ponto próximo estará à frente do olho, no segundo caso o ponto próximo estará no infinito 
e no último caso o ponto próximo encontrar-se-á atrás do olho. 

 

6.1.3 Refracção Ocular 
 
A refracção ocular, que é igual ao recíproco da distância ao ponto remoto do olho em metros, designada 
pela letra maiúscula K, pode ser definida como a distância dióptrica ao ponto remoto do olho. Por 
exemplo se o PR de um olho míope estiver situado a 20 cm do ponto principal do olho, então 
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D 00.5
2.0

1    e     m 2.0 −=−=−= KPR    

 
sendo o comprimento axial do olho reduzido é designado pela letra k´, se k´ é a distância imagem então 
 

 metros)  em   (com      k
k
nK ′
′
′

=′  

 
onde K ’ é o comprimento dióptrico do olho, e é a vergência imagem necessária para se formar 

uma imagem nítida na retina.  
Para o olho reduzido V = U + Fe, onde U e V são as vergências objecto e imagem, respectivamente. 

Para se ter uma imagem retiniana nítida, temos que ter V = K ’ e o objecto tem de estar situado no ponto 
remoto do olho. Assim temos que u = k e V = K donde resulta que 

 

ee FKFKK −′=+=′ K      ou      
 
A refracção ocular é então o comprimento dióptrico do olho subtraindo a sua potência. Para um 

emétrope como K = 0 vem que eFK =′ . 
 

6.1.4 Ametropias axiais e refractivas 
 
As ametropias, de um modo geral, podem ser divididas quanto à sua origem, em axiais e refractivas. Nas 
ametropias axiais a potência do olho normal é assumida como sendo +60 D, donde qualquer erro 
refractivo pode ser atribuído a um erro no comprimento axial do olho. Nas ametropias refractivas o 
comprimento axial do olho é assumido como 22.22 mm e qualquer defeito é atribuído a um erro na 
potência do olho. 

Para miopias elevadas existe uma tendência para que o globo ocular seja alongado. No entanto 
um olho maior do que o normal não implica a existência de uma miopia. O crescimento do olho faz-se de 
uma forma organizada para que a distância focal esteja de acordo com o comprimento axial desse olho. 

Se eFKK −′= , qualquer variação no valor de K ′ , K ′Δ , produz uma variação idêntica no erro 
refractivo ( KΔ ) se a potência do olho se mantiver constante. 

 

Se 
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Então k
n

KK ′Δ
′
′

−=′Δ
2

 (em metros). 

 
Se D  60+=′K  então kK ′Δ−=′Δ 7.2 . Um aumento de 1 mm no comprimento axial do olho produz 

uma variação de – 2.7 D na ametropia, na direcção da miopia. 
 

6.1.5 Lente de Correcção 
 

O olho não acomodado forma imagens nítidas para objectos no plano do ponto remoto. Uma lente forma 
imagens de objectos distantes no plano do 2º foco principal. Assim, um olho está corrigido para visão ao 
longe, através de uma lente, quando o seu 2º foco principal coincidir com o ponto remoto do olho. 

Se a lente estiver em contacto com o olho, a distância focal ef ′  tem de ser igual à distância ao 

ponto remoto k e a potência vF  tem de ser igual a K. A refracção ocular indica então, a potência 
necessária para a correcção da ametropia a uma dada distância no ponto principal do olho. 

 
 

 PR 

Fe´ 

 
Figura 6- 5 Princípio óptico de correcção de um olho miópico com uma lente de contacto para visão ao 
longe. 
 
 

 

 PR 

Fe´ 

 
Figura 6- 6 Princípio óptico de correcção de um olho hipermetrópico com uma lente de contacto para visão 
ao longe. 
 

  

6.1.6 Refracção no Ponto dos Óculos 
 
A potência de uma lente montada em óculos é entendida como a potência do vértice posterior. É definida 
como a recíproca da distância em metros desde o vértice posterior da lente até ao segundo ponto 
principal. 
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A lente de óculos pode ser substituída por uma lente fina equivalente de potência spF  igual à 

potência do vértice posterior vF ′  da lente colocada no seu vértice posterior A2 (figura 6-7). 
A posição em que a lente fina deve ser colocada A2 relativamente ao olho pode ser chamada 

ponto dos óculos (posição S). 
 

 

 A1 A2 P 
S 

d 
 

Figura 6- 7 Correcção de um olho hipermetrope para longe com uma lente fina, colocada no vértice posterior 
da lente espessa, com uma potência equivalente à potência do vértice posterior da lente espessa. 
 
 

A distância d (positiva) é a distância vertex. Esta distância situa-se regra geral entre 12 e 16 mm do 
ponto principal do olho reduzido. 

A potência da lente dos óculos necessária para corrigir uma dada ametropia é chamada refracção 
dos óculos e pressupõe que o valor da distância vertex seja conhecida. 

As figuras 6-8 e 6-9 representam dois olhos, um míope e outro hipermetrope corrigidos para longe 
com uma lente fina de potência spF  e distância focal spf ′  com o seu 2º foco principal F ’ coincidindo com o 

ponto remoto do olho. 
Para cada um dos casos, 
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como a lente dos óculos está colocada no ar  
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Figura 6- 8 Olho miópico corrigido para longe com uma lente fina. 
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 MR 

F’ M ’ P S 

d 

k 
f ‘sp  

Figura 6- 9 Olho hipermetrópico corrigido para longe com uma lente fina. 
 
 

6.1.7 Mudança da Distância Vertex 
 
Uma prescrição não está completa se especificar só a refracção dos óculos ( spF ). É necessário que a 

distância ao vértice (d) seja indicada. 
A modificação da prescrição pode ser deduzida através da seguinte regra: se a lente for deslocada 

x mm para uma posição mais perto do ponto remoto do olho, tem que se reduzir a distância focal de x 
mm. O inverso também é verdadeiro. 

Assim, se F0 for a potência da lente original e spF  for a potência modificada necessária quando a 

distância focal é alterada de x mm, temos: 
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A alteração de potência necessária é dada por ( 0FFsp − ), donde  

 

)milímetros  em  x(       
1000

2
0

0
Fx

FFsp ±=−  

  
Usa-se o sinal negativo ou o sinal positivo de acordo com a regra descrita acima. 
 
 

6.1.8 Hipermetropia e acomodação 
 
O olho emétrope só necessita usar a acomodação quando observa objectos a curtas distâncias. O míope 
não corrigido só usa a acomodação para ver objectos mais perto que o seu ponto remoto. Por outro lado 
um olho hipermetrope não corrigido tem que exercer um esforço contínuo de acomodação para ver 
nitidamente objectos ao longe e um esforço ainda maior para a visão ao perto. 
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Devido a esta actividade excessiva, o músculo ciliar de um hipermetrope jovem adquire algum 
grau de tonicidade fisiológica, o que quer dizer que um certo grau de acomodação permanece em jogo e 
não pode ser relaxada de forma nenhuma. A hipermetropia pode então ser vista como consistindo de 
duas partes: a hipermetropia manifesta e a hipermetropia latente. O erro manifesto é medido pela lente 
mais positiva que é aceite em visão ao longe, isto é, a lente mais positiva com a qual a AV permanece no 
seu nível máximo. O erro latente é a acomodação residual que existe involuntariamente devido ao tono 
fisiológico. 

 

6.1.9 Afaquia 
 

A afaquia é a condição na qual o cristalino está ausente ou em casos raros encontra-se deslocado da 
área pupilar, não tendo portanto influência no sistema óptico do olho. 

A ausência do cristalino pode ser de origem congénita, mas normalmente é devida à extracção por 
cirurgia (cataratas). Na ausência de outras patologias, ou alterações degenerativas, a remoção do 
cristalino permite a recuperação de boa visão mas produz uma hipermetropia elevadíssima. 

A remoção do cristalino elimina a capacidade do olho acomodar, donde ser necessário que exista 
uma compensação para o longe e outra mais potente para o perto. 

Se a cirurgia às cataratas for realizada num só olho a condição resultante é chamada afaquia 
unilateral. Este estado refractivo apresenta problemas para a visão binocular (anisometropia elevada). 

Para estudar o sistema óptico de um olho afáquico retornamos ao olho esquemático de Gullstrand-
Emsley, ao qual se retira o cristalino. O raio de curvatura da córnea é 7.8 mm, o índice de refracção dos 
humores é 1.333 e o comprimento axial do olho emétrope é 23.89 mm. Assim temos, 
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donde 

  
D 08.13+=−′= eFKK  

 
o que corresponde à potência de uma lente de contacto necessária para corrigir o olho afáquico. Se em 
vez de lentes de contacto se usar lentes de vidro no ponto dos óculos (regra geral 12 mm do vértice do 
olho), temos: 
 

mm 45.8812
08.13

1
=+=+=′ dkfsp  
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e por conseguinte 
 

D 31.11
45.88

1000
+==spF    

 
Inferior à potência de uma lente de contacto equivalente. 
 

6.1.10 Imagem retiniana em ametropias corrigidas   
   

No estudo da formação das imagens retinianas quando o olho é corrigido com lentes, devem ser 
distinguidas duas partes: em primeiro lugar, a lente forma uma imagem real ou virtual independentemente 
do olho, de acordo com as leis dos focos conjugados. Em segundo lugar, a imagem formada pela lente 
torna-se objecto para o olho. O objecto será real para o olho se a primeira imagem for formada à frente do 
olho e será virtual se a primeira imagem se formar atrás do olho. 

Na figura 6-10 apresenta-se um olho hipermetrópico não acomodado corrigido para visão ao longe 
por uma lente de potência Fsp, à distância d do ponto principal do olho.  

Raios paralelos a partir da extremidade Q de um objecto distante fazem um ângulo u0 com o eixo 
óptico e convergem pela acção da lente para formar uma imagem real em Q’1, no plano do segundo foco 
principal F ’. 
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Figura 6- 10 Esquema da formação da imagem retiniana em olhos hipermetrópicos corrigidos. 

 
 

6.1.11 Visão em ametropias esféricas 
 
Se não for corrigida por acomodação, uma dioptria de hipermetropia produz o mesmo grau de 
desfocagem na imagem em visão longe, que uma dioptria de miopia. 

O efeito na visão de uma ametropia esférica não corrigida, pode ser estudado colocando uma 
série de lentes positivas de potência conhecida em frente de um olho corrigido ou emétrope. Isto significa 
que o olho é posto artificialmente míope e a visão não pode ser melhorada por acomodação. 
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Existe alguma evidência que sugere que os míopes podem, como resultado da experiência, 
adquirir alguma habilidade para interpretar imagens difusas, que podem não ser revelados noutros 
estados refractivos. 

A relação entre a visão sem problemas e a ametropia esférica é aproximadamente linear e pode 
ser expressa por uma equação da forma 

 
cmSD +=log  

 
uma boa aproximação (recta que passa pela média de todos os valores obtidos por vários autores) é uma 
equação do tipo 
 

73.05.0)metros(log += SD . 
 

 Pode obter-se uma expressão semelhante para a acuidade visual na forma decimal, isto é 
 

DdV logloglog −=  
 
onde d é a distância de teste (6 metros). Substituindo-se a equação de log  D na equação anterior obtém-
se 
  

SV 5.005.0log −=  
 

As expressões anteriores são aproximações relativamente à média, donde na prática é possível 
que exista um certo desvio em relação ao valor obtido. Além disso se estivermos a estudar uma miopia 
que tenha um valor maior que duas ou três dioptrias, a expressão linear entre D e S vem então com a 
forma, 73.05.0)metros(log += SD . 
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Capítulo 7  
 

Astigmatismo 
 
 
 

7.1 Introdução 
 
A maioria dos olhos apresenta um ligeiro grau de astigmatismo. Para isso contribuem dois factores, em 
primeiro lugar a córnea não é perfeitamente esférica, mesmo nas imediações do eixo óptico do olho. 
Estudos efectuados provaram que na infância a córnea tende a ser ligeiramente astigmática, com o 
meridiano mais potente (curvatura máxima) situado na vertical ou próximo da vertical. O astigmatismo 
resultante da córnea chama-se astigmatismo corneal e no caso do meridiano mais potente ser o vertical 
designa-se por astigmatismo corneal segundo a regra, ou directo. No caso do meridiano mais potente ser 
o horizontal ou perto da horizontal o astigmatismo designa-se contra a regra ou inverso. 

A curvatura da superfície posterior da córnea é mais difícil de ser medida, no entanto existem 
evidências práticas que sugerem que, pelo menos nos casos de astigmatismo corneal bem marcado, 
ambas as superfícies apresentam a mesma configuração. Isto significa que uma pequena fracção, cerca 
de uma décima parte, do astigmatismo corneal resultante da superfície anterior é neutralizada pela 
superfície posterior.  

A segunda causa possível de astigmatismo ocular é o cristalino, sendo que cada uma das suas 
superfícies, ou mesmo ambas, podem ser astigmáticas. Mesmo que as duas superfícies possam ser 
vistas como sendo esféricas, qualquer descentramento ou inclinação do cristalino relativamente à córnea 
dá lugar a astigmatismos oblíquos. Seja qual for a causa, qualquer astigmatismo devido ao cristalino é 
designado por astigmatismo lenticular e é uma componente do astigmatismo total do olho.  
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7.2 Notação axial 
 
Numerosos sistemas foram e continuam a ser usados para especificar um determinado meridiano do 
olho, com base na direcção do eixo do cilindro corrector e segundo a especificação da base do prisma 
prescrito.  

Para a especificação do eixo do cilindro a maioria dos países adoptou um esquema conhecido 
como notação padrão, TABO (Technisher Ausschuss fur Brillenoptik), ou AXINT (adoptado em 1950 pela 
Federação Internacional das Sociedades Oftalmológicas). De acordo com este método, um meridiano é 
especificado pelo ângulo (contrário aos ponteiros do relógio) que faz com a horizontal. A notação pode 
ser representada graficamente por umas das figuras abaixo, embora a primeira representação seja 
preferida porque é consistente com o círculo trigonométrico e porque o eixo é especificado entre 0º e 180º. 
Nas prescrições o símbolo de grau (º) é deliberadamente omitido para que não existam hipóteses de 
engano, para que, por exemplo 15º não possa ser confundido com 150. Por esse motivo, por convenção, 
o eixo horizontal é denotado por 180 e não 0. 
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Figura 7- 1 Sistemas de notação axial padrão. 

 
 

7.3 Formação da imagem no olho astigmático 
 
Para a maior parte das finalidades, o astigmatismo ocular pode ser estudado com base no olho reduzido. 
A única superfície refractora é então considerada como toroidal com diferentes curvaturas e potências em 
dois meridianos principais mutuamente perpendiculares. Para distinguir os dois meridianos denotaremos 
o meridiano de maior potência por α e o de menor potência por β . Assim,  
 potente. mais principal meridiano no olho do potência =αF  

 potente. menos principal meridiano no olho do potência =βF  

 
Dado um objecto a uma distância dióptrica L, as vergências imagem após refracção no olho são, 

respectivamente: 
 

 αα FLL +=′  

 ββ FLL +=′  



  Astigmatismo 

- 117 - 

O astigmatismo ocular será então (em módulo) a diferença entre Fα e Fβ. Considerando um feixe 
de raios luminosos provenientes de um ponto objecto B situado no eixo óptico a incidir num olho 
astigmático, verifica-se que os raios incidentes no meridiano vertical α, de maior potência, irão convergir 
para um ponto focal Bα’ no eixo óptico, enquanto que os raios incidentes no meridiano horizontal β, de 
menor potência, irão convergir para um ponto focal Bβ’ no eixo óptico. Raios incidentes em diferentes 
pontos do meridiano vertical serão focados no mesmo plano de Bα’ mas a diferentes distâncias do eixo, 
formando uma linha horizontal, em que Bα’ é o ponto intermédio. Do mesmo modo acontece para o 
meridiano horizontal, resultando numa linha vertical em que Bβ’ é o ponto intermédio. Assim, a 1ª linha 
focal é sempre paralela ao meridiano de menor potência e a última linha focal é sempre paralela ao 
meridiano de maior potência. 

Em termos de dioptrias (e não geometricamente), a meia distância entre as duas linhas focais 
temos uma secção do feixe de luz com a forma circular. Este círculo é chamado de círculo de confusão 
mínima (ver figura 7-2). À distância entre as duas linhas focais chama-se intervalo de Sturm. As 
dimensões das duas linhas focais e o diâmetro do círculo de confusão mínima podem ser calculadas com 
base na semelhança de triângulos conforme se pode observar na figura 7-3.  
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Figura 7- 2 Esquema de um feixe de luz refractado por um olho astigmático, com astigmatismo directo. 
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Figura 7- 3 Análise do feixe astigmático refractado por sobreposição das secções cruzadas nos dois 
meridianos principais. 
 
 
 Os raios no meridiano mais potente (mais convergente) convergem para formarem a 1ª linha 
focal através de αB ′ , enquanto a segunda linha focal passa através de βB ′ . O comprimento dessas duas 

linhas, denotadas por a e b respectivamente, são determinadas pelas secções cruzadas do feixe no outro 
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meridiano. Torna-se evidente que o círculo confusão mínimo deve ter o seu centro em βB ′  onde as 

secções cruzadas do feixe têm o mesmo comprimento, z. 
 Sejam as distâncias de αB ′ , βB ′  e zB′  desde o ponto principal do olho, P, denotados por αl ′ , βl ′  

e zl ′ ,  respectivamente e g denote o diâmetro da pupila. Então, da semelhança entre triângulos temos: 
 Comprimento da primeira linha focal (a) 
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 Comprimento da segunda linha focal (b) 
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 Diâmetro do círculo de confusão mínimo (z) 
 

 
α

α

β

β

l
ll

g
l

ll
ga zz

′
′−′

=
′

′−′
=  

 
donde temos 
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Exemplo 7.1 
 
 Um olho reduzido com astigmatismo, cujo índice de refracção é 4/3 e com um diâmetro de 5 mm, 
tem uma potência de +62 D no meridiano de 30º e uma potência de 64 D no meridiano de 120º. Determine 
as características principais da imagem de um ponto objecto axial a uma distância de 1 m do ponto 
principal do olho. 
 
 A linha focal mais horizontal produzida por este olho é a linha relativa ao meridiano de 120º, que 
é o mais potente, 64.00 D, logo foca antes da linha relativa ao meridiano de 30º. É um astigmatismo misto 
directo (meridianos de 30º e 120º logo astigmatismo misto e directo uma vez que o meridiano mais vertical 
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é mais potente que o meridiano mais horizontal). Assim tendo a conta a figura 7.3 podemos afirmar que o 
meridiano de 120º que produz a linha mais horizontal está relacionado com o meridiano α, enquanto que 
o meridiano de 30º está relacionado com o meridiano. Assim temos: 
 
Para o meridiano 120º (α)  
 

D 00.1111 −=−== lL (temos que colocar o sinal de menos devido à convenção de sinais, 

porque está à frente do olho). 
 Fv = + 64.00 D 
 L’ = Fv + L = 64.00 – 1.00 = + 63.00 D 

 mm 16.2100.6311 +==′=′ Ll  
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Para o meridiano de 30º (β) 
 

D  00.1111 −=−== lL (temos que colocar o sinal de menos devido à convenção de sinais, 

porque está à frente do olho). 
 Fv = + 62.00 D 
 L’ = Fv + L = 62.00 – 1.00 = + 61.00 D 

 ( ) mm 21.8661.00 34 +=×=′′=′ Lnl  
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Para o círculo de confusão mínima 
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 Assim as características da imagem de um ponto objecto situado a 1 m de distância do olho 
astigmático são a = 0.159 mm; b = 0.164 mm e z = 0.081 mm. De notar que quando as linhas focais são 
aproximadamente do mesmo tamanho elas têm sensivelmente o dobro da dimensão do círculo de 
confusão mínima.  
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7.4 Classificação do astigmatismo 
 
A classificação do astigmatismo no olho não acomodado está baseada na posição da retina relativamente 
às linhas focais do feixe refractado (ver figura 7.4). 
 Dando um ponto objecto distante, cada uma das duas linhas focais está situada no ponto 
principal do meridiano correspondente, isto é, F ’α e F ’β. 
 Existem assim cinco possibilidades diferentes para classificar o astigmatismo.  
 

1- Astigmatismo Hipermetrópico Composto (AHC): As duas linhas focais estão situadas atrás da 
retina ou o que é o mesmo, a retina está situada em frente da 1ª linha focal.  

2- Astigmatismo Hipermetrópico Simples (AHS): A 1ª linha focal está situada na retina e a 2ª linha 
focal está situada atrás da retina, ou ainda, a retina coincide com a primeira linha focal. 

3- Astigmatismo Misto: A retina está situada entre as duas linhas focais, a 1ª linha focal está situada 
antes da retina e a 2ª linha focal está situada depois da retina. 

4-  Astigmatismo Miópico Simples (AMS): A 2ª linha focal coincide com a retina, enquanto a 1ª linha 
focal está situada antes de retina, ou ainda simplesmente, a retina coincide com a 2ª linha focal.  

5- Astigmatismo Miópico Composto (AMC): As duas linhas focais estão situadas atrás da retina, ou 
a retina está depois da 2ª linha focal. 

 
Estas cinco situações podem ser representadas na figura 7.4. 
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Figura 7- 4 Representação esquemática da classificação do astigmatismo. 
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Figura 7- 5 Esquema representando as linhas focais nos vários casos da classificação do astigmatismo. 

 
 

7.5 Lentes correctoras para longe 
 
Para cada um dos dois meridianos principais correspondentes, de um olho não acomodado e astigmático, 
existe um ponto remoto diferente. A lente de correcção deve ser astigmática, sendo que os seus 
meridianos devem estar alinhados com os do olho e as potências principais coincidirem, em cada um dos 
casos, com o ponto remoto correspondente. 
 Tal como nas ametropias esféricas, a refracção ocular K de um olho não acomodado astigmático 
representa a potência de lente de correcção em contacto com o olho.      
 
Exemplo 7.2 
 
 Um olho astigmático tem potências principais de +64.00 D ao longo do eixo de 60º e +68.00 D ao 
longo do eixo de 150º. O comprimento dióptrico K ’, é +61.00 D. Qual é a sua refracção ocular? 
 
 O eixo de 150º sendo o mais potente (+68.00 D) é o que produz a 1ª linha focal, neste caso a linha 
focal horizontal correspondente, ao passo que a 2ª linha focal, vertical, é produzida pelo meridiano menos 
potente que é o de 60º (+64.00 D). Neste caso estamos em presença de um astigmatismo misto inverso. 
Os meridianos são 60º e 150º, e inverso porque o meridiano mais potente é o horizontal e o menos 
potente é o vertical. O meridiano associado ao meridiano α é o meridiano de 60º, enquanto que o 
meridiano associado ao meridiano β é o meridiano de 150º. 
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Para o eixo de 60º 
 K ’ = +61.00 D 
 Fe = +64.00 D, como K ’ = K + Fe  vem que a refracção ocular K, é: 
 K = K ’ – Fe  então temos 
 K = +61.00 – 64.00 = -3.00 D 

 
Para o eixo de 150º 
 K ’ = +61.00 D 
 Fe = +68.00 D,  
 K = K ’ – Fe  então temos K = +61.00 – 68.00 = -7.00 D 

 
A refracção ocular é expressa como  
 Esf  da  meridiano  do  Eixo  Cil   Esf ×=K  

 
 
 
    

 
 
 

60º 

150º 

0º 

90º 

-3.00 D 
-7.00 D

( ) D  00.400.300.7 −=−−−  (correspondendo à potência cilíndrica)  
donde º60 D 00.4   D 00.3 ×−−=K . 
 Esta é a lente de correcção necessária para uma lente em contacto com o olho. A lente para a 
distância ao vértice (14 mm) não será esta lente. Temos 14 mm de intervalo entre o olho e as lentes dos 
óculos. Então teremos: 
 
Para o meridiano de 60º 
 K = -3.00 D 
 k = 1/ K = -333.3 mm 
 d = 14 mm, tendo a presente a figura 7.6 temos que: 
 k + d = fsp 

  fsp = -333.3 + 14 = -319.3 mm 
  Fsp =1/ fsp = 1/-0.3193 = -3.13 D 

 
 

 

Potência esférica (Esf) 
(potência do eixo mais 
positivo) 

Potência do outro eixo 
menos a potência 
esférica (CIL) 

Eixo correspondente 
à potência esférica. 
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Para o meridiano de 150º 
 K = -7.00 D 
 k = 1/ K = -142.9 mm 
 d = 14 mm,  
 k + d = fsp 

  fsp = -333.3 + 14 = -128.9 mm 
  Fsp =1/ fsp = 1/0.1283 = -7.76 D 

 
A potência da lente correctora será então: D  13.3−  correspondente à potência esférica e 

( ) D  63.413.376.7 −=−−− correspondendo à potência cilíndrica. Então temos:  
 
 º60 D 63.4   D 13.3 ×−−=K  
 

 Fsp 

M’ P 

fsp d k’ 

k 

PR 

 
Figura 7- 6 Esquema representando o caso de um míope, onde se mostra o ponto remoto (PR), a distância 
focal da lente (fsp), a distância do olho à lente dos óculos (d) e a distância que vai desde o ponto principal do 
olho até ao ponto remoto do mesmo olho (k). 
 
 
Exemplo 7.3 
 
 Uma prescrição apresenta +12.50  +3.50x170 a 14. Que potências serão associadas a 12 mm? 
 
 A prescrição indica que a lente a utilizar a 14 mm terá de ter uma potência no meridiano de 170º 
de +12.50 D e no meridiano perpendicular 80º uma potência de +16.00 D ( 50.350.12 + ). É um 
astigmatismo directo ou segundo a regra (meridiano mais vertical dentro dos limites de 75º - 105º e 
meridiano mais vertical mais potente que o horizontal). Assim temos que: 
 
No meridiano de 80º  

fsp =1/ Fsp = 1/16.00 = +62.50 mm, diminuindo 2 mm para passar de 14 mm para 12 mm temos um 
novo fsp. 

Para 12 mm fsp =+62.50 - 2.00 = +60.50 mm 
 Para 12 mm Fsp = 1/0.0605 = +16.53 D 
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No meridiano de 170º 
fsp =1/ Fsp = 1/12.50 = +80.00 mm, diminuindo 2 mm para passar de 14 mm para 12 mm temos um 

novo fsp. 
Para 12 mm fsp =+80.00 - 2.00 = +78.00 mm 

 Para 12 mm Fsp = 1/0.078 = +12.82 D 

 
Assim temos que para a nova distância de 12 mm: +12.82 +3.71x170º a 12. Ou arredondando por 
múltiplos de 0.25 D temos finalmente: 12  a  º17075.375.12 ×++ .  
 
 

7.6 Visão em astigmatismo não corrigido 
 
A visão em olhos astigmáticos é afectada por três factores diferentes nomeadamente: a quantidade de 
astigmatismo, o tipo de astigmatismo e a direcção do eixo do astigmatismo. 
 

7.6.1 Quantidade de astigmatismo 
 
A partir das equações que nos dão o comprimento das linhas focais e do círculo de confusão mínima 
temos que as dimensões das linhas focais e do círculo de confusão mínima do feixe astigmático são 
directamente proporcionais à quantidade de astigmatismo em dioptrias (F ’α -F ’β), com todas as outras 
variáveis se mantiverem inalteradas.  
 

7.6.2 Tipos de astigmatismo 
 
Se considerarmos um feixe de raios proveniente de um ponto objecto distante, a incidir na pupila do olho, 
a mancha produzida na retina depende da secção transversal do feixe astigmático que se produz na 
retina e da forma como a acomodação pode melhorar, ou não, a imagem retiniana. 
 A refracção ocular média, que denota o erro médio dos erros refractivos nos dois meridianos do 
olho astigmático, dá a posição do círculo de confusão mínima, em função da ametropia. Por exemplo 

φ×−− 00.200.1 , indica uma miopia de  -1.00 D no meridiano principal de φ  e uma miopia de  -3.00 D 

no meridiano de φ+ 90º. 
 
 No astigmatismo miópico simples e composto a visão ao longe não pode ser melhorada através 
da acomodação, visto que se for empregue a acomodação o erro refractivo aumenta em vez de diminuir. 
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 Nas situações em que o astigmatismo é hipermetrópico simples ou composto, o indivíduo pode 
colocar na retina a secção transversal mais favorável do feixe astigmático através da sua acomodação (a 
que estiver disponível). Se supusermos que o círculo de confusão mínima foi colocado na retina, isto é, o 
círculo de confusão está no foco, a equação vista na secção 7.3 que dá o diâmetro do círculo de confusão 
mínima, z, é dada por: 
 

βα LL
Astgz

′+′
=   

 
mas como a média das duas vergências imagens L’α e  L’β  devem ser igual ao comprimento dióptrico do 
olho, K, vem então que: 
 

 
K
Astgz
′

=
2

 

 
 Se tivermos uma ametropia esférica temos que o diâmetro do círculo de confusão, j, no olho não 
acomodado é dada por: 
 

 
K

Kgj
′

=  

 
então para o mesmo diâmetro da pupila do olho, o círculo de confusão dado por x D de astigmatismo é só 
metade da dimensão do círculo de confusão dado pela mesma quantidade da ametropia esférica. Isto é 
útil quando se quer estimar a quantidade de astigmatismo: o astigmatismo para o caso da ametropia 
esférica é o dobro do astigmatismo. Por exemplo uma visão de 0.3 (6/18) indica uma ametropia esférica 
próxima de 1.00 D, ou um astigmatismo cerca de 2.00 D (assumindo que a parte mais favorável do feixe 
astigmático está situado na retina). 
 
 Se um olho não acomodado tem astigmatismo misto, só uma das linhas focais pode ser colocada 
na retina, porque tem uma linha focal antes da retina e outra depois da retina, uma é miópica e outra 
hipermetrópica e só a hipermetrópica, pode com a ajuda da acomodação, ser colocada em foco na retina. 
Este astigmatismo depende muito da posição do círculo de confusão mínima, que pode estar atrás ou à 
frente da retina de acordo com a refracção ocular média, isto é, se estamos do lado da miopia ou do lado 
da hipermetropia.  
 

7.6.3 Direcção do eixo 
 
Como as linhas verticais e horizontais são as predominantes nas letras utilizadas para testes de visão, 
bem como na maior parte dos objectos que nos rodeiam, a visão é mais baixa (pobre) quando o 
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astigmatismo ocular é oblíquo (está segundo um eixo oblíquo) com os outros factores permanecendo 
invariáveis. 
 No que diz respeito às letras minúsculas impressas, não existe dúvida que os traços verticais são 
colectivamente os mais importantes. Os traços verticais nas letras b, d, h, t, p e y são importantes para o 
reconhecimento destas letras. Outro factor importante é que as letras impressas, numa linha, têm o 
mesmo espaçamento entre elas, que as letras impressas entre linhas. Consequentemente. Se as linhas 
focais horizontais ou as elipses se formarem na retina, as letras não são vistas ou identificadas. Elas 
tornam-se indistintas ou indistinguíveis parecendo todas juntas. 
 A melhor maneira de se ver o efeito do astigmatismo não corrigido é simular com óculos de 
prova, os vários casos dos erros refractivos, ou através de fotografias ou figuras que evidenciem ou 
simulem os vários casos de astigmatismo variando só o eixo do astigmatismo. 
 

    
 
 
 

                       
  

 
 
 

                       
 
 
        
 

                                  

Difracção 

Objecto Pupila de 4 mm 

Pupila de 4 mm c/ 0.5 D de 
desfocagem 

Pupila de 4 mm c/ 0.35 D de 
desfocagem 

Pupila de 4 mm c/ 0.5 D 
desfocagem vertical  

Pupila de 4 mm c/ 0.5 D 
desfocagem horizontal 

Pupila de 4 mm c/ 0.5 D 
desfocagem obliqua  
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Figura 7- 7 Ilustrações dos vários tipos de casos de astigmatismo e a sua influência na visão das letras. 
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Capítulo 8  
 

Acomodação e visão próxima 
 
 
 

8.1 Introdução 
 
O olho jovem é capaz de alterar a sua potência refractiva através de alterações na curvatura das 
superfícies do cristalino (lente cristalino). O aumento da potência no cristalino é conhecido como 
acomodação. Num estado não acomodado, o músculo ciliar está relaxado, a zónula de Zinn que sustém o 
cristalino está no seu estado de máxima tensão, donde as superfícies do cristalino estão na sua forma 
mais plana e a retina é conjugada com o ponto remoto do olho, MR. No estado acomodado o músculo 
ciliar está contraído, relaxando a zónula de Zinn e permitindo ao cristalino adoptar a sua forma convexa. 
No estado totalmente acomodado a retina é conjugada com o ponto próximo do olho, MP. A distância 
linear que vai desde o ponto próximo (de acomodação) até ao olho é dada por b e a distância dióptrica (1/ 
b) por B. O máximo esforço acomodativo é chamado amplitude de acomodação (Amp). 
 O que acaba de ser afirmado está baseado na aproximação clássica da acomodação. Deste 
ponto de vista o olho diz-se relaxado quando não existe nenhuma acomodação presente. A figura 8.1 
apresenta os pontos remoto e o ponto próximo de acomodação (ou simplesmente pontos remoto e 
próximo) de um olho emétrope, enquanto na figura 8.2 temos um olho míope. 
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M P 

M R 

P M ’ 

b k ’  
Figura 8- 1 Ponto remoto e ponto próximo de acomodação, MR e MP respectivamente, de um olho emétrope.  
 
 

M P M R P M ’ 

b k ’ 
k  

Figura 8- 2 Ponto remoto e ponto próximo de acomodação, MR e MP respectivamente, de um olho míope. 
 
 
 No caso geral temos as relações seguintes: 
 
Para o olho não acomodado (relaxado) 
 
 eFKK +=′  
 
Para o olho totalmente acomodado 
 
 ( )AmpFBK e ++=′  
 
donde 
 
 BFKAmp e −−′= . 
 
Como BKAmp −= , vem que AmpKB −= . 
 
 Nos olhos emétropes e míopes, o ponto próximo é invariante e real (está sempre à frente do 
olho) sendo b negativo devido à convenção de sinais, tal como é mostrado na figura 8.1. No olho 
hipermetrope, o ponto próximo pode ser real, virtual ou estar no infinito, dependendo da amplitude de 
acomodação. Se a amplitude de acomodação for maior que a distância refractiva correspondente ao erro 
refractivo do olho, temos que o ponto próximo é real, porque se situa à frente do olho. Se a amplitude de 
acomodação for igual à distância refractiva correspondente ao erro refractivo do olho, então o ponto 
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próximo está situado no infinito. Finalmente, no caso da amplitude de acomodação ser menor que o erro 
refractivo do olho, então o ponto próximo estará forçosamente atrás da retina sendo portanto virtual. 

 
 

MR2 
MR1 MR3 

MR MP M ’ P 

Com a acomodação em jogo  
Figura 8- 3 Percurso do ponto remoto para um hipermetrope, quando se põe em jogo a amplitude de 
acomodação. MR é o ponto remoto do hipermetrope (virtual, atrás da retina), MR1 é o ponto remoto quando 
se começa a acomodar (ainda virtual, porque atrás da retina), MR2 é a posição em que o ponto remoto devido 
à acomodação se encontra no infinito e MR3 é a posição do ponto remoto na posição correspondente à 
máxima acomodação (real porque está à frente do olho). 
 

 
 

MR MP M ’ P 

Com a acomodação em jogo 

MR2 MR1 

 
Figura 8- 4 Percurso do ponto remoto para um míope, quando se põe em jogo a amplitude de acomodação. 
MR é o ponto remoto do míope (real, à frente da retina), MR1 é o ponto remoto quando se começa a acomodar 
(real, porque à frente da retina) e MR2 é a posição do ponto remoto na posição correspondente à máxima 
acomodação (sempre real porque está sempre à frente do olho). 

 
 

 Outra noção que se deve ter é a de percurso de acomodação. O percurso de acomodação é a 
distância linear que vai desde o ponto remoto até ao ponto próximo. Assim, um percurso de acomodação 
de 8 D para um olho emétrope diz-nos que o ponto próximo está a 1/8 mm do olho, isto é, -0.125 mm do 
ponto principal do olho. Neste caso diz-se que o percurso de acomodação vai desde o infinito (por ser 
emétrope) até 0.125 mm à frente do olho. 
 
 
Exemplo 8.1 
 
 Qual o percurso de acomodação de um olho não corrigido míope de -4.00 D cuja amplitude de 
acomodação é +10 D? 
 

 mm 250m 25.0
4

1
−=−=

−
=k  

 D 14104 −=−−=−= AmpKB  
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 mm 14.7
14
1

−=
−

=b  

 
 Assim, enquanto a amplitude de acomodação é 10 D (a amplitude é sempre positiva) o percurso 
de acomodação vai desde 250 mm à frente do olho, até 7.14 mm à frente do olho. 
 
 

8.2 Acomodação ocular e nos óculos 
 
Na prática a maioria das medições é referida ao plano dos óculos. Assim, em geral, determina-se a 
refracção no ponto dos óculos e não a refracção ocular. Considerando o objecto próximo B a uma 
distância ls do ponto dos óculos S, um feixe paraxial desde B terá uma vergência Ls que é igual a 1/ls no 
ponto dos óculos (ver figura 8.5). 
 

 
B S M ’ P 

ls d k’  
Figura 8- 5 Distância ls de um objecto próximo medido a partir do ponto dos óculos . 

 
 

Adicionando uma lente positiva de potência Ls, o raio proveniente de B passa a ser paralelo ao 
eixo óptico, como se viesse do infinito (ver figura 8.6). 
 

 
B S M ’ P 

ls d k’  
Figura 8- 6 Adição de uma lente positiva de potência Ls, tornando o raio proveniente de B paralelo ao eixo. 

 
 
 Esta lente hipotética compensará as necessidades de acomodação, donde a sua potência será 
uma medida da acomodação no plano dos óculos.  
 Se denotarmos a amplitude no ponto dos óculos por As teremos então: 
 
 ss LA −=  
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 Devido à separação lente-olho, a acomodação ocular requerida A difere em geral da 
acomodação no plano dos óculos. Na maioria das vezes de uma quantidade ainda significativa. Se d é a 
distância ao vértice, que é a distância positiva do ponto dos óculos ao ponto principal do olho, no caso 
mais simples do olho emétrope (figura 8.5), a distância objecto PB medida a partir do olho vem: 
 
 sldSBPSPB +−=+=    
 
 
Exemplo 8.2 
 
 Para ls = -250 mm e d = 14 mm, qual será a distância ao ponto próximo medido a partir do ponto 
principal do olho? 
 
Se mm 250−=sl  e mm 14=d , então mm 26425014 −=−−=PB , dando 

 D 4
25.0
11

−=−==
s

s l
L , então a refracção dos óculos vem: 

 D 00.4+=−= ss LA  
e  

 D 79.3
264.0
1

+=⎟
⎠
⎞

⎜
⎝
⎛−−=A que é a refracção ocular.  

 
 Então para um emétrope, a acomodação ocular é menor que a acomodação dos óculos.  
  
 Em visão ao longe, a vergência no ponto principal dos olhos é igual à refracção ocular K. Em 
visão ao perto, os raios provenientes do ponto B incidem no olho com vergência L que é numericamente 
menos positiva ou mais negativa que K. Para imagens retinianas focadas, a potência do olho deve então 
ser aumentada de K – L. A refracção ocular requerida é então dada por: 
 
 LKA −=  
  
 A figura 8.5 ilustra o caso de um olho míope corrigido por uma lente fina de potência Fsp 
(negativa). 
 

 

B 

S M ’ P 

ls d k’ 

B’ 
l ’s l 

 
Figura 8- 7 Olho míope corrigido por uma lente (óculos) de potência Fsp observando um objecto próximo B. 
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 A acomodação requerida pode ser calculada através de um método passo a passo como se pode 
inferir no Exemplo 8.3 apresentado abaixo. 
 
 
Exemplo 8.3 
 
 Um olho míope está corrigido por uma lente fina de -4.00 D a uma distância ao vértice de 14 mm. 
Um objecto próximo é observado a 350 mm do ponto principal do olho. Compare a acomodação ocular 
com a acomodação dos óculos e a que é requerida por um emétrope para focar o mesmo objecto.  
 
 A distância do ponto principal ao objecto é –350 mm (convenção de sinais: à frente do olho). A 
acomodação no ponto dos óculos vem: 

 
s

sss l
LLA 1

=⇒−=  

 mm 33635014 −=−+=sl  

D 98.2AD 98.2
336

1
s +=⇒−=−=sL  

 
para visão ao longe  
  D, 00.4−=spF mas como dfk sp +=  vem 

 donde  mm 26414250 −=−−=k  

 D 79.3
264

11
−=−==

k
K  

 
para visão ao perto 
 D 98.2−=sL , D 4.00−=spf , donde 

 então  D 98.600.498.2 −=−−=′sL  

 mm 27,143
98.6
1

−=−=′sl , como mm 14=d  vem então 

 mm 27.15727.14314 −=−−=l , donde 

 D 36.6
27.157

11
−=−==

l
L  

 
A refracção ocular virá então D 57.236.679.3 =+−=−= LKA  
 
 Para um emétrope (sem nenhuma lente entre o objecto e o olho) se o objecto está a 350 mm do 

olho a acomodação ocular será então, D 86.2
350

1
+==A  
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Em resumo temos: 
 
 Acomodação nos óculos: +2.98 D 
 Acomodação ocular: +2.57 D 
 Acomodação para o olho emétrope: +2.86 D 
 
 

8.3 Adição ao perto 
 
A primeira coisa a saber é conhecer qual a acomodação disponível, a qual pode ser determinada na 
prática ou então recorrer ao uso de tabelas com valores esperados para uma determinada idade. Na 
tabela 8.1 temos os valores esperados para a amplitude de acomodação, relativamente à idade do 
indivíduo. 
 

Tabela 8- 1 Amplitude de acomodação esperada e adições aproximadas para várias idades. 

Idade 
Amplitude de acomodação 

esperada (D) 
Adição ao perto (D) 

20 10 - 
30 8 - 
40 6 - 
45 4 0.00 – 1.00 
50 2 1.00 – 1.75 
55 1 1.50 – 2.25 
60 1 1.75 – 2.50 

  
 
 A 3ª coluna dá aproximadamente uma adição que deve ser incorporada antes da amplitude ser 
inserida. Deve ser notado que a adição prescrita depende da distância de trabalho do paciente e da 
actual amplitude de acomodação e nunca só na idade. 
 Uma regra é que se deve manter sempre metade da amplitude de acomodação de reserva 
(disponível). Assim, temos que: 
 
 ss AmpLAdd  21−−=  
 
 A distância de trabalho mais comum situa-se entre 380 e 450 mm, dando um valor médio para Ls 
da ordem de -2.50 D.  
 Face às diferenças entre a acomodação dos óculos e a acomodação ocular, qual deve ser a 
adição ao perto a prescrever? A esta pergunta podemos responder que a adição baseada numa fracção 
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particular da amplitude no ponto dos óculos é quase exactamente a fracção da amplitude ocular. No 
exemplo que se segue vamos ver o que acabamos de afirmar em mais pormenor. 
 
Exemplo 8.4 
 
 Um olho está corrigido para visão ao longe com +4.00 D esféricas a 14 mm do ponto principal do 
olho. A amplitude de acomodação nos óculos é 3.00 D e a distância de trabalho é 400 mm a partir do 
plano dos óculos. Qual é a adição teórica necessária e qual a amplitude ocular que deve ser colocada em 
uso? 
 
 donde  D 50.2mm 400 −=⇒−= ss Ll  

 D 00.150.150.2 21 +=−=−−= ss AmpLAdd  
 
A refracção ocular K é dada por: 
 retina) da (atrás  mm 250D 00.4 +=′⇒+= spsp fF  

 donde  mm 14=d  
 vem que o  mm 23614250 =−=k  

 D 24.4
236

11
+===

k
K  

 
Com uma adição de +1.00 D em uso, a correcção ao perto deve ser 
 D 00.500.100.4 +=++=MF logo em visão próxima a -400 mm dos óculos temos 

 D 50.2−=sL  

 então  D 00.5+=MF  

 resultando  D 50.2+=+=′ Mss FLL  

 :seguinte a  determinar para  distância a sendo  D 400 Lll s +=′  

 e  mm 38614400 =−=l  
 D 59.2+=L  
 
A acomodação ocular em uso é LK − donde vem: 
 
 D 65.159.224.4 +=−+=Acc  
 
 A amplitude de acomodação nos óculos é +3.00 D, donde o objecto deve ser colocado a uma 
distância dióptrica de -3.00 D do plano dos óculos, com a distância de correcção em uso. Assim 
consequentemente, traçando o feixe de raios incidente no olho, onde a sua vergência é a distância 
dióptrica B relativamente ao ponto próximo do olho, temos: 
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 D 00.3−=sL  

 donde  D 00.4+=spF  

 resultando  D 00.1+=+=′ spss FLL  

 
mm 1000+=′sl , o que adicionado (neste caso como a medida é feita inversamente ao seu sentido 

original é negativa) a d vem: 
 
 donde mm, 986141000 =−=l  

 e  D 01.1
986

1
==B  

 D 23.301.124.4 +=−+=−= BKAmp  
 
 A acomodação ocular em uso com a adição prescrita é 1.65 D, metade da amplitude de 
acomodação, sendo a quantidade total de +3.23 D. A fracção é 1.65/3.23 = 0.51 que é praticamente igual à 
fracção adoptada para determinar a prescrita. 
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Capítulo 9  
 

Convergência 
 
 
 

9.1 Introdução 
 
O termo convergência tem dois significados diferentes. Um descreve a posição relativa do eixo visual 
quando intersecta um determinado ponto próximo do olhar e o outro denota o movimento relativo dos 
eixos visuais quando a fixação muda de um ponto D mais distante para um ponto N mais próximo (ver 
figura 9.1). 
 A divergência tem os dois significados opostos. Se a fixação mudar de N para D ou nas 
proximidades, o eixo visual diverge da posição, mas na posição final deve manter um estado de 
convergência ou paralelismo. Um estado de divergência não pode ocorrer com uma fixação binocular 
precisa de um objecto real. 
 Se objectos próximos e distantes estiverem ambos no plano médio dos olhos, ambos os olhos 
aduzem (de aduzir, músculo ou relativo ao músculo que realiza a adução, introduzir) igualmente em 
convergência e abduzem (de abduzir, que produz a abdução, que conduz para fora) em divergência. 
Quando fixam um objecto posicionado à direita, o olho direito abduz e o olho esquerdo aduz (ver figura 
9.1). Um caso especial acontece quando a fixação muda, encontrando-se os dois pontos objecto N e D no 
mesmo eixo visual do olho direito. Neste caso só o olho esquerdo tem necessidade de se mover para 
mudar a fixação de D para N.  
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 D no ∞ 

N 

N 

D 

(a) (b) (c)  
Figura 9- 1 Convergência, (a) convergência de um ponto distante D para um ponto próximo N; (b) fixação de 
um ponto fora do plano médio; (c) convergência assimétrica, os dois pontos estão alinhados com o olho 
direito.  
 
 

9.2 Posições de repouso e de fixação 
 

9.2.1 Posição anatómica de repouso 
 
Os eixos orbitais divergem em cerca de 22º do plano médio. Assim, os eixos orbitais fazem entre si um 
eixo de aproximadamente 45º. Na ausência de qualquer enervação dos músculos extra-oculares, os olhos 
normalmente adoptam a posição de uma divergência e elevação moderadas. 
 

9.2.2 Posição fisiológica de repouso 
 
Esta é a posição assumida na ausência de qualquer estímulo e ocorre em resultado de um tónus mínimo 
dos músculos extra-oculares, tal como no caso de sonos profundos, ou sob anestesia geral. É uma 
posição divergente, mas menor que no caso da posição anatómica de repouso. 
 Quando os olhos fixam um objecto distante, os eixos visuais são paralelos, mas podem ter este 
alinhamento na ausência de um estímulo visual. 
 Como as fóveas num indivíduo normal são pontos correspondentes, o reflexo de fusão direcciona 
os olhos de tal forma que o objecto sob observação seja visto simultaneamente em ambas as fóveas. Se 
um olho é ocluído, ele pode tender a desviar-se da posição correcta para fixação. 
 Definem-se outras duas posições que são, a posição de fusão livre e a posição activa ou 
funcional. Estas duas posições são definidas como sendo a distância onde o ponto de fixação é 
longínquo e a posição de fusão livre é conhecida como a posição de repouso funcional. A posição de 
fusão livre é a posição adoptada pelos olhos quando os reflexos, postural e de fixação estão activos, mas 
com a fusão impedida. A posição activa ou funcional dos olhos é a sua posição quando os eixos de 
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fixação se intersectam no ponto de observação e ocorre quando os olhos estão paralelos para um objecto 
distante e convergem para um objecto próximo. A convergência teórica faz com que os olhos passem da 
posição de repouso anatómica para a posição de fusão livre para longe. A divergência (ou convergência 
fusional) faz com que os olhos passem da posição de fusão livre para a posição activa. 
 Quando as convergência próxima e acomodativa estão em jogo, os olhos encontram-se na 
posição de fusão livre em visão próxima. Tal como na visão ao longe, a convergência fusional será 
necessária para fazer com que os olhos adoptem as suas posições correctas para visão binocular. 
 

 

Longe 

Próxima 
Plano médio 

ZR 

Repouso anatómico 
Repouso fisiológico 

Fusão Livre 
Activa 

Fusão Livre 

Activa 

 
Figura 9- 2 Posições de repouso e posições activas do olho direito, quando olha para a esquerda. 

 
 

9.3 Ponto próximo de convergência 
 
Cada olho individualmente é capaz de aduzir até 40º, mas o máximo esforço de convergência pode 
corresponder a um ângulo muito menor que 80º. Este facto pode ser explicado pela diferente enervação 
super-nuclear no cérebro. 
 O ponto mais próximo no plano médio para o qual os olhos podem convergir é o ponto próximo 
de convergência. Poder ser determinado na prática pedindo ao paciente para observar uma linha preta 
vertical num cartão branco. O cartão é depois aproximado dos olhos do paciente e pede-se ao indivíduo 
que diga quando vir duas linhas. A posição do cartão é então lida para marcar o ponto próximo de 
convergência. 
 A desvantagem deste método reside no facto de alguns pacientes não observarem a diplopia 
(visão dupla), enquanto outros continuam a convergir mesmo que já não exista visão binocular (é melhor 
ter em conta os olhos do paciente à medida que a linha de teste se vai aproximando). 
 A posição do ponto próximo de convergência varia desde 20 mm, medidos a partir da cana do 
nariz, até mais de 500 mm. Os valores normais encontram-se entre 40 a 60 mm do plano corneal. Valores 
muito maiores que 160 mm podem apresentar sintomas em visão ao perto. 
 Apesar da diminuição da potência acomodativa com a idade, não existe uma diminuição da 
amplitude de convergência com o aumento da idade. É pouco provável que a convergência seja tão boa 
numa pessoa idosa como numa pessoa jovem, devido possivelmente à falta de uso e à perda de 
convergência acomodativa. Algumas pessoas de idade conseguem manter boas potências de 
convergência enquanto outras não. 
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 A convergência é essencialmente um ajustamento para obter visão binocular ao perto, mas 
também pode ser produzida voluntariamente. Com prática muitas pessoas podem convergir (e acomodar) 
na ausência de um estímulo físico, tal como realmente estivessem a observar um objecto próximo. 
 
 

9.4 Unidades de convergência 
 
Uma rotação ocular em torno do eixo antero-posterior do olho é medida em graus ou radianos. No 
entanto os movimentos dos olhos também podem ser medidos em dioptrias prismáticas Δ, uma unidade 
angular de grande conveniência em óptica oftálmica. 
 Na figura 9.3 podem observar-se dois olhos que rodaram para obter fixação binocular do ponto B 
no plano médio. A convergência de cada olho é o ângulo que rodaram a partir da sua direcção original. A 
linha que liga os dois centros de rotação ZD e ZE pode ser chamada linha base interocular e o seu 
comprimento é a distância interpupilar (DI) para visão distante.  
 

 
ZD 

2p 

θD 

q 

ZE 
θE 

B C 

 
Figura 9- 3 Representação do ângulo total de convergência C. 

 
 

 O ângulo total de convergência C, é o ângulo entre os eixos visuais quando dirigidos para o 
ponto de fixação. Este ângulo é a soma algébrica dos ângulos de rotação θD e θE dos olhos direito e 
esquerdo, respectivamente. Se 2p for a distância interocular, q a distância entre o ponto de fixação e a 
linha de base interocular e )( 1 metros  em   com qqQ = obtemos, 
 

 metros em  e  com  2tan 1 pq
q
pC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − . 

 
o sinal negativo é devido à convenção de sinais utilizada. 
 
 ( ) 2tan 1 pQC −= −  
 
como )º (em tan100) (em u u =Δ temos, 
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 ( )( ) ( ) cm). em  (com  221002tantan100) (em 1 ppQpQpQ C −=−=−=Δ −  
 
ou mais simplesmente, 
  
  cm). em  (com  ) (em DIDIQC ×−=Δ  
 
 
 
Exemplo 9.1 
 
 Supondo que a distância do ponto de fixação à linha de base interocular é 250 mm e que a 
distância inter-pupilar é 60 mm, calcular o ângulo total de convergência em dioptrias prismáticas.  
Como mm 250−=q  e mm 60=DI , temos: 
 

 Δ=×=⎟
⎠
⎞

⎜
⎝
⎛ ×

×
−−=

−
 24646

10250
1

3C  

 
 

9.5 Convergência, acomodação e erro refractivo 
 
Quando se estuda a acomodação relativamente à convergência, é conveniente usar a linha de base 
interocular como origem da medição, em vez do ponto principal do olho. A exigência teórica de 
acomodação no caso da emetropia é Q− . Então a fixação binocular a uma distância dióptrica de -3 D 
requer 3 D de acomodação e 3 x DI Δ de convergência. 
 A relação entre convergência e acomodação é afectada por qualquer ametropia não corrigida e 
também por qualquer correcção em uso. Vamos começar com a emetropia para estabelecer uma norma. 
 

9.5.1 Emetropia 
 
A figura 9.4 ilustra a necessidade teórica em acomodação e convergência à medida que o objecto se 
aproxima do olho emetrópico. A convergência total requerida (C) é apresentada para três distâncias 
interpupilares diferentes. 
 A equação DIQC ×−=Δ) (em representa a convergência total requerida como sendo pQ2− (p 
em cm), enquanto a acomodação é Q− . Então, a razão entre a convergência e a acomodação na 
emetropia é dada por 
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Figura 9- 4 Angulo total de convergência C em dioptrias prismáticas, como função da distância objecto para 
diferentes distâncias interpupilares, 60,65 e 70 mm. 
 
 

9.5.2 Ametropia não corrigida 
 
Se o erro de refracção é K para longe, a acomodação requerida em visão próxima, a uma distância 
dióptrica Q, é ( )QK − , enquanto a convergência não sofre alterações sendo pQ2− . Então  
 

 ⎟
⎠
⎞

⎜
⎝
⎛

−
=

KQ
Qp

A
C 2  

 
 Esta razão tem uma gama de possíveis valores. O hipermetrope tem necessidade de acomodar 
mais que o emetrope enquanto convergem da mesma quantidade. Se, contudo, a acomodação 
habitualmente necessária para corrigir o erro de refracção para longe é ignorada e só a acomodação 
adicional requerida para visão ao perto for considerada, a razão C/A é a mesma que para o emetrope. Na 
miopia a situação é diferente. Um míope de -3.00 D encontra-se no foco para objectos situados a 1/3 m e 
não acomoda para esta ou para distâncias maiores. 
 

9.5.3 Emetrope com correcção para perto 
 
Se as lentes dos óculos estão opticamente centradas para uma dada distância de trabalho, a 
convergência requerida não é afectada. Por outro lado, a necessidade acomodativa é reduzida pela 
adição da prescrição para leitura. 
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9.5.4 Ametropia corrigida com óculos 
 
Vamos considerar que os óculos são de uso constante e que as lentes estão opticamente centradas para 
visão ao longe. Em visão ao perto, a acomodação ocular requerida difere da acomodação no ponto dos 
óculos, enquanto a convergência é afectada pelo efeito prismático das lentes. No exemplo que se segue 
(exemplo 9.2) podemos ver o que foi dito atrás. 
 
 
Exemplo 9.2 
 
Um míope bilateral com uma DI de 66 cm está corrigido com lentes de potência -6.00 D a 14 mm do ponto 
principal dos olhos. Calcule a convergência e a acomodação requeridas quando se observa um objecto 
no plano médio a uma distância de 400 mm do plano dos óculos. Assuma que a distância entre os centros 
de rotação dos olhos estão a 26 mm deste plano. 
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Figura 9- 5 Acomodação e convergência no olho míope corrigido com lente de óculos. 

 
 
Para visão ao longe 
 
 D 00.6−=spF  então 

 mm 67,166
6
1

−=−=′spf  

como mm 14=d  então 
 mm 67,1801467,166 −=−−=k  logo, 

 D 53.5
67,180

1
−=−=K  

 
Para visão ao perto 

 D 50.2
10400

1
3 −=

×
−=

−SL  

 D 00.6−=spF , então vem que, 

 D 50.800.650.2 −=−−=′SL , donde 



  Convergência 

- 144 - 

 mm 65,117
50.8
1

−=−=′Sl  

com mm 14=d  vem que 
 mm 65,1311465.117 −=−−=l  donde 

 D 61,7
65,131

1
−=−=L   

 
A acomodação ocular é: ( ) D 07.260.753.5 +=−−−=−= LKA  
 
O olho direito fixa B’R, a imagem de B formada pela lente dos óculos. Se as distâncias HB e HB’R são 
dadas por hR (=p) e h’R, respectivamente, então 
 

 mm 71.9
50.8
50.233 =

−
−

×=
′

==′
S

S
RR L

L
hh  

 
e o ângulo de convergência em dioptrias prismáticas é dado por: 
 

 Δ=⎟
⎠

⎞
⎜
⎝

⎛
+

××=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+′
′

××=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
′

×=  52.13
2665,117

71.9100210021002
RRR

R

R

R

ZSSH
h

ZH
hC  

e 
 

 53.6
07.2
52.13

==A
C  

 
 

9.5.5 Ametropia corrigida com lentes de contacto 
 
Neste ponto vamos ter atenção ao exemplo que se segue: 
 
 
Exemplo 9.3 
 
A partir do exemplo 9.2, calcular a convergência e a acomodação que é requerida com uma lente de 
contacto de correcção. 
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Figura 9- 6 Acomodação e convergência no olho míope corrigido com lente de contacto. 

 
 

A distância entre o olho e o ponto de fixação B será mm 41414400 −=−−    
 

A acomodação ocular é D 42.2
414
1

+=
−

−=A  

 
A convergência em dioptrias prismáticas é pQC 2−= com 
 
 ( ) mm 42626400 −=−−=−== zlHZq sR  

donde D 35.2
426

11
−=−==

Q
Q  e  ( ) D 51.1535.23.322 =−××−=−= pQC  

 

 41.6
42.2
51.15
==

A
C  

 
Então a lente de contacto utilizada para correcção produz mais convergência e acomodação que a lente 
dos óculos no exemplo 9.2. A razão entre a convergência e a acomodação é praticamente a mesma para 
os dois casos. 
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Capítulo 10  
 

Apêndice 1 
 
 
 

10.1  “Óptica” – Eugene Hecht, Fundação Calouste Gulbenkian 
 

10.1.1  Convenção de sinais  
 
A luz propaga-se da esquerda para a direita e os símbolos para as quantidades mais importantes são os 
que se seguem: 
 

Índice de refracção – n   Raio de curvatura - R 
Distância objecto - so    Distância imagem - si 

Distância focal imagem – fo   Distância focal imagem – fi 
Altura do objecto - yo    Altura da imagem - yi 

 

A convenção de sinais é a seguinte: 
 

Tabela 10- 1 Convenção de sinais para dioptros esféricos, lentes delgadas e espelhos esféricos 
Distância objecto e distância focal objecto Positivas para a esquerda de V 
Distância imagem e distância focal imagem Positiva para a direita de V 

Raio de curvatura Positivo se C estiver à direita de V 
Alturas objecto e imagem  Positivas acima do eixo óptico 
Distância x0 Positiva para a esquerda de Fo 
Distância xi Positiva para a direita de Fi 
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Tabela 10- 2 Significado associado ao sinal dos vários parâmetros relativos a lentes delgadas, a dioptros 
esféricos e espelhos esféricos 

Quantidade Sinal 

 + - 
so Objecto real Objecto virtual 
si Imagem real Imagem virtual 

f 
Lente convergente ou 

espelho côncavo 
Lente divergente ou 

espelho convexo 
R Espelho convexo Espelho côncavo 
yo Objecto não invertido Objecto invertido 
yi Imagem não invertida Imagem invertida 

MT Imagem não invertida Imagem invertida 

 
 

 

R1 > 0 
R2 < 0 

Biconvexa  

 

R1 = ∞ 
R2 < 0 

Plano-convexa  

 

R1 > 0 
R2 > 0 

Menisco 
convexo  

 

R1 > 0 
R2 > 0 

Menisco 
côncavo  

 

Menisco 
côncavo 

R1 = ∞ 
R2 > 0 

 Bicôncava 

R1 < 0 
R2 > 0 
 

 
Figura 10- 1 Secção de lentes simples esféricas. A superfície da esquerda é a nº 1, por ser a primeira a ser 
interceptada pela luz quando esta se propaga da esquerda para a direita. O seu raio é R1.  
 
 

10.1.2 Dióptros esféricos 
 

V 

R 

so 

Luz 

n1 n2 

S 

h 

P C 
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si 

lo 

θ i 

θ r 

θ t 
ϕ 

A 
n2 

 
Figura 10- 2 Refracção num dióptro esférico ( 12 nn > ). Focos conjugados. 
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10.1.2.1  Fórmulas  

 
 
Equações de refracção em dióptros esféricos: 
  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+

o

o

i

i

io l
sn

l
sn

Rl
n

l
n 1221 1  

 

 
R

nn
s
n

s
n

io

1221 −
=+  

 
Distâncias focais objecto e imagem de uma superfície de refracção esférica: 
 

 R
nn

nfo
12

1

−
=  

 

 R
nn

nf i
12

2

−
=  

 
 

10.1.3 Lentes delgadas 
 

 

yo 

yi Fo 

Fi 

xo xi’ f f 
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Figura 10- 3 Localização do objecto e da imagem criada por uma lente delgada. 
 
 

10.1.3.1  Fórmulas  

 
Equação das lentes delgadas: 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=+

21

11111
RR

n
ss l

io
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 Para lentes delgadas oos
fs

i

=
→0

lim  e iis
fs =

→00

lim , donde io ff =  e os índices não são 

necessários. Assim: 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
RR

n
f l  (Equação dos fabricantes de lentes) 

 

 
fss io

111
=+   (Fórmula de Gauss) 

 
 2fxx io =  (Equação de Newton) 
 
 Note-se que para uma lente de índice de refracção ln num meio de índice de refracção mn , se 
tem: 
 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

21

1111
RR

n
f lm  

 

onde 
m

l
lm n

nn = . 

 
  A ampliação lateral ou transversa MT é igual à razão entre a dimensão transversal da imagem 
final formada por um sistema óptico e a dimensão original do objecto: 
 

 
o

i
T y

yM ≡  

 

 
o

i
T s

sM −=  

 
 Um valor positivo de MT indica que a imagem não é invertida (é direita, isto é, com a mesma 
orientação do objecto), enquanto que um valor negativo de MT significa que a imagem é invertida 
relativamente ao objecto que a originou. Todas as imagens reais formadas por lentes delgadas são 
invertidas. 
 
 

10.1.3.2 Associação de lentes delgadas 

 
No caso de uma associação de lentes delgadas, começa-se por construir a imagem formada pela 
primeira lente do objecto original e com esta imagem intermédia, usando novamente o traçado de raios, 
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constrói-se a imagem final da associação de lentes (ver figura 10-5). A imagem produzida por um sistema 
de lentes para além de poder ser obtida através do traçado de raios (normalmente três raios, um dirigido 
ao ponto focal da lente, outro dirigido ao centro da lente e outro paralelo ao eixo óptico), também pode ser 
obtida através das equações relativas à associação de duas ou mais lentes. A equação mais geral é a de 
um sistema de lentes separadas por uma determinada distância entre as lentes (d). Caso as lentes 
estejam em contacto essa distância é nula e a referida equação simplifica-se.  
 

 

y1 Fo2 

Fi2 

So1 si1 

f1 f’1 

y2 

so2 si2 

Fo1 
Fi1 

f2 f2 

S1 

P´1 

P1 

L2 L1 

d 

y’1 

 
Figura 10- 4 Duas lentes delgadas a uma distância d, superior à soma das suas distâncias focais. Neste caso 
a imagem intermédia é real e pode-se começar com o ponto P´1 e considerá-lo como objecto real para a lente 
L2. 
 
 
 Para L1 vamos ter: 
 

 
111

111
oi sfs

−=   

 
ou 

 
11

11
1 fs

fs
s

o

o
i −
=  

  
 Para L2 vamos ter: 
 

 
222

111
oi sfs

−=  

 

 
22

22
2 fs

fs
s

o

o
i −
=  

como 102 isds −=  vem: 
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 ( )101112

101

112
2

2 fsfsfd
fs

sffdf
s

o

o

i −−−
−

−
=  

 
Para a associação de lentes delgadas a ampliação transversa total é igual ao produto das ampliações 
individuais, isto é, 
 
 21 TTT MMM ⋅=  
 
ou seja  
 

 ( ) 101101

21

fsfsd
sfM i

T −−
=  

 
 
Pode-se calcular ainda a distância focal anterior e posterior na associação de lentes como: 
 

 ( )
( )21

21d.f.a
ffd

fdf
+−
−

=  

 

 ( )
( )21

12d.f.p
ffd

fdf
+−
−

=  

 
quando as lentes estão em contacto (separação entre as lentes é nula, 0→d ) a distância focal anterior e 
posterior são iguais, e vem: 
 

 
12

12d.f.pd.f.a
ff

ff
+

==  

e 

 
21

111
fff

+=  

 
donde para um sistema de N lentes em contacto vamos ter: 
 

 
Nffff
1...111

21
+++=  
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10.1.4 Espelhos esféricos 
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Figura 10- 5 Espelho esférico côncavo. Focos conjugados. 

 
 

10.1.4.1  Fórmulas  

 
Equação dos espelhos esféricos: 
 

 
Rss io

211
−=+  

 
e que  

 
R

ff io
2

−==  

 
O aumento transversal produzido por um espelho esférico é dado por: 
 

 
o

i

o

i
T s

s
y
yM −=≡  
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Apêndice 2 
 
 
 
 

10.2  “Introduction to Optics” – L. Pedrotti e F. Pedrotti,                      
Prentice Hall. 

 

10.2.1 Convenção de sinais  
 
Desenhando um sistema de eixos cartesianos na superfície reflectora ou refractora, tal que a origem do 
sistema de eixos O coincida com o vértice da superfície, V, teremos que:  

▪ As distâncias imagem e objecto são positivas para a direita do vértice e negativas para a 
esquerda de V. 

▪ O raio de curvatura é positivo quando o centro de curvatura C está à direita do vértice e 
negativo quando C está a direita de V.  

▪ As dimensões verticais são positivas acima do eixo horizontal (eixo óptico) e negativas abaixo 
desse eixo. 

 
 Neste livro (Introduction to Optics), o centro de curvatura C é o centro da superfície esférica e o 
ponto V é o vértice da calote esférica. A linha que passa por V designa-se por eixo principal. Tomando a 
origem das coordenadas em V, todas as quantidades medidas para a direita de V são positivas e, para a 
esquerda, são negativas.   

 

+ 

+ 

_ 

_ 
 V C O 

 
Figura 10- 6 Convenção de sinais 
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As letras utilizadas para as várias quantidades são:  
 

Índice de refracção - n Raio de curvatura – r 
Distância objecto - u Distância imagem – v 

Distância focal objecto e imagem – f  
 

 

10.2.2 Espelhos esféricos 
 

 

O C I V 

r 

u v 

 
Figura 10- 7 Reflexão numa superfície esférica e localização do ponto imagem. 

 
 

10.2.2.1  Fórmulas 

 
Fórmula de Descartes  
 

 
rvu
211

=+  

Ponto focal 
 

 
2

  ou  21 rf
rf

==  

 
 
Aumento transversal produzido por um espelho esférico é dado por: 
 

 
u
v

h
hm

o

i −===
objecto do altura
imagem da altura  
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10.2.3 Superfícies de refracção esféricas 
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Figura 10- 8 Refracção numa superfície esférica côncava ( )12 nn > . 

 
 

10.2.3.1 Fórmulas 

 
Fórmula de Descartes  
 

 
r
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u
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v
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=−  

O aumento transversal produzido por uma superfície refractora esférica é dado por: 
 

 
un
vn

h
hm i

2

1

0objecto do altura
imagem da altura

===  

 
 

10.2.4 Lentes esféricas 
 

10.2.4.1 Fórmulas 

 
Fórmula de Descartes para lentes delgadas 
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Equação dos fabricantes de lentes 
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 ⎟⎟
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donde combinando as duas últimas equações temos 
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O aumento transversal produzido por uma superfície refractora esférica é dado por : 
 

 
u
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h
hm
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i ===
objecto do altura
imagem da altura  

 

10.2.4.2 Associação de lentes delgadas 

 

Para lentes em contacto temos ...1111
321
+++=

ffffeq
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Apêndice 3 
 
 
 

10.3  “Optics” – M. Freeman, Butterworths. 
 

10.3.1 Convenção de sinais  
 
A convenção de sinais adoptada neste livro é a seguinte:  

▪ Todas as distâncias são medidas desde a lente ou espelho. As distâncias que se apresentem no 
mesmo sentido da luz incidente são positivas e as em sentido inverso são negativas.  

▪ Todas as distâncias perpendiculares ao eixo óptico são medidas a partir do eixo óptico. Todas as 
que estiverem acima do eixo óptico são positivas e as que estiverem abaixo do eixo óptico são 
negativas. 

▪ Os ângulos medidos no sentido anti-horário são positivos e os ângulos medidos no sentido 
horário são negativos. 
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Figura 10- 9 Convenção de sinais adoptada. 
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10.3.2 Espelhos esféricos 
 

 

O C I A 
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l l’ 

 
Figura 10- 10 Reflexão numa superfície esférica. 

 
 

10.3.2.1  Fórmulas 

 
Fórmula de Descartes  
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Ponto focal 
 

 
2

  ou  211 rf
rff

==
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=  

Aumento transversal produzido por um espelho esférico é dado por: 
 

 
l
l

h
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′
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′
==

objecto do altura
imagem da altura  

 
 

10.3.3 Superfícies de refracção esféricas 
 

10.3.3.1 Fórmulas 

 
Fórmula de Descartes  
 

 
r
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l
n

l
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O aumento transversal produzido por uma superfície refractora esférica é dado por: 
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10.3.4 Lentes esféricas 
 

10.3.4.1 Fórmulas 

 
Fórmula de Descartes para lentes delgadas 
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Equação dos fabricantes de lentes 
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donde combinando as duas últimas equações temos 
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Equação de Newton é dada por 
 

 22 ffxx ′==′−  
 
O aumento transversal produzido por uma superfície refractora esférica é dado por: 
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10.3.4.2 Associação de lentes delgadas 

 

Para lentes em contacto temos ...1111
321
+++=

ffffeq
, quando as lentes estão separadas por uma 

distância d, a expressão anterior deixa de ser válida sendo que 
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111 fll
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Apêndice 4 
 
 

10.4  “Física IV” – Halliday, Resnick and Krane 
 

10.4.1 Convenção de sinais  
 
Para espelhos esféricos: 
 
O centro de curvatura C é o centro da superfície esférica e o ponto c é o centro do espelho. A linha que 
passa por C e c designa-se por eixo central. A distância focal de um espelho côncavo é positiva e a 
distância focal de um espelho convexo é negativa. As imagens reais formam-se no mesmo lado do 
espelho em que se encontra o objecto e as imagens virtuais formam-se do lado oposto ao do objecto. As 
distâncias objecto e imagem para objectos e imagens reais são positivas, e são negativas no caso dos 
objectos e imagens serem virtuais. Assim pode-se afirmar que as distâncias objecto são tidas como 
quantidades positivas quando os objectos se encontram no espaço do objecto e as distâncias imagem 
são tidas como positivas quando se encontram no espaço da imagem. De notar que para o caso dos 
espelhos, os espaços objecto e imagem coincidem (ver figura 10.11). Relativamente ao raio de curvatura, 
será uma quantidade positiva para um espelho côncavo e negativa para um espelho convexo.  
 
Para superfícies de refracção e lentes esféricas: 
 
O centro de curvatura C é o centro da superfície de refracção ou da lente esférica. As imagens reais 
formam-se no lado da superfície de refracção ou da lente que é oposto ao do objecto, enquanto que as 
imagens virtuais formam-se no mesmo lado do objecto. O lado em que se encontra o objecto é chamado 
espaço objecto e o lado em que encontra a imagem é chamado espaço imagem. As distâncias objecto e 
imagem para objectos e imagens reais são positivas e negativas no caso de virtuais. As distâncias 
objecto são tidas como quantidades positivas quando os objectos se encontram no espaço do objecto e 
as distâncias imagem são tidas como positivas quando se encontram no espaço da imagem. Para as 
superfícies de refracção e lentes esféricas, os espaços objecto e imagem estão em lados opostos (ver 
figura 10.12). Quanto ao raio de curvatura, quando um objecto está em frente de uma superfície de 
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refracção convexa o raio de curvatura é positivo e quando está frente a uma superfície côncava é 
negativo. 
 
As letras utilizadas para as várias quantidades são:  

Índice de refracção - n 
Distância objecto - p 

Distância imagem - i 
Distância focal objecto e imagem – f 
Raio de curvatura - r 

 
 

10.4.2 Espelhos esféricos 
 

c 
C 

O 
I 

r 

p i 

Espaço Objecto 

Espaço Imagem 

 
Figura 10- 11 Espelho concavo, com a formação de uma imagem virtual de um objecto real. 

 
 

10.4.2.1 Fórmulas 

 
O ponto focal de um espelho esférico é dado por: 
 

 
2

  ou  21 rf
rf

==  

 
e a Fórmula de Descartes para os espelhos esféricos é dada por: 
 

   111
fip

==  

 
quanto ao aumento transversal produzido por um espelho esférico é dado por: 
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10.4.3 Superfícies de refracção esféricas 
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Figura 10- 12 Formação de imagens reais e virtuais numa superfície de refracção convexa. 

 
 

10.4.3.1 Fórmulas 

 
A fórmula de Descartes é dada por:  
 

 
r

nn
i

n
p
n 1221 −

=+  

e o aumento transversal produzido por uma superfície de refracção esférica é dada por: 
 

 
p
im −=  

 

10.4.4 Lentes esféricas finas 
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Figura 10- 13 Lente fina convergente, com a formação de uma imagem real a partir de um objecto real. 
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10.4.4.1 Fórmulas 

 
A equação das lentes finas é dada por (equação de Descartes):  
 

 
fip
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Para a equação dos fabricantes de lentes finas no ar tem-se que 
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se a lente estiver imersa num meio que não o ar com índice de refracção nmeio, na equação dos 
fabricantes de lentes substitui-se o índice de refracção n por meionn . 
  
A ampliação lateral será dada por: 
 

 
h
hm
′

=  e 
p
im −=  

 

10.4.4.2 Associação de lentes delgadas 

 
Quando um objecto O está colocado em frente de um sistema de duas lentes cujo eixo central coincide, 
podemos localizar a imagem final do sistema das lentes através de dois passos: 
 
 Passo 1: Seja p1 a distância do objecto à primeira lente. Aplicando a equação das lentes finas 

obtemos a distância i1 da imagem produzida pela primeira lente (L1). 
 
 Passo 2: Ignorando a presença da lente L1, consideramos a imagem obtida no passo 1 como 

objecto para a segunda lente (L2). Se o novo objecto estiver localizado depois da lente L2 (espaço 
imagem), a distância objecto p2 para essa lente é tida como negativa, caso contrário, p2 é tida 
como positiva. Determina-se então a distância i2 da imagem final produzida pela lente L2 através 
da equação das lentes finas. A ampliação lateral total será dada por: 

 
 21mmM =  
 
onde m1 é a ampliação lateral produzida pela lente L1 e m2 é a ampliação lateral produzida pela lente L2. 
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Apêndice 5 
 
 

10.5  “Física” – Alonso e Finn, Addison Wesley 
 

10.5.1  Convenção de sinais  
 
Neste livro o centro de curvatura C é o centro da superfície esférica e o ponto O é o vértice da calote 
esférica. A linha que passa por O designa-se por eixo principal. Tomando a origem das coordenadas em 
O, todas as quantidades medidas para a direita de O são positivas e, para a esquerda, são negativas. A 
lista de convenção de sinais utilizada é: 

 
As letras utilizadas para as várias quantidades são:  

Índice de refracção - n 
Distância objecto - p 

Distância imagem - q 

Distância focal objecto e imagem – f 
Raio de curvatura - r 

 
 

10.5.2 Espelhos esféricos 
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Figura 10- 14 Trajectória de um raio reflectido numa superfície esférica. 
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A convenção de sinais para espelhos esféricos é a seguinte: 
 

Tabela 10- 3 Convenção de sinais em espelhos esféricos 
 + - 
Distância objecto  Real Virtual 
Distância imagem Real Virtual 
Distância focal Convergente Divergente 
Raio de curvatura Côncavo Convexo 

 
 

10.5.2.1 Fórmulas 

 
Fórmula de Descartes  
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Ponto focal 

 
2

  ou  21 rf
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==  

 
Aumento transversal produzido por um espelho esférico é dado por (ver figura 10-15): 
 

 
p
q

AB
abM −===

objecto do altura
imagem da altura  

 
o sinal negativo deve-se ao facto da distância ab ser negativa (figura 10-15), pois é uma imagem 
invertida. 
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Figura 10- 15 Cálculo do aumento de um espelho esférico. 
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10.5.3 Superfícies de refracção esféricas 
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Figura 10- 16 Trajectória de um raio refractado numa superfície esférica. 

 
 
A convenção de sinais para uma superfície refractora esférica é a seguinte: 
 

Tabela 10- 4 Convenção de sinais para uma superfície refractora esférica 
 + - 
Distância objecto  Real Virtual 
Distância imagem Virtual Real 
Distância focal Convergente Divergente 
Raio de curvatura Côncavo Convexo 

 
 

10.5.3.1 Fórmulas 

 
Fórmula de Descartes  
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Distância focal objecto (fo ) 
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Distância focal imagem (fi ) 
 

 r
nn

nf
21

2'
−

−=  



  Apêndices 

- 168 - 

O aumento transversal produzido por uma superfície refractora esférica é dado por (ver figura 10-17): 
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Figura 10- 17 Raios principais para uma superfície refractora esférica e formação da imagem através da 
mesma superfície de refracção em que 21 nn > .  

 
 
 Poder-se-á construir figuras semelhantes para os casos em que 21 nn <  e para superfícies 
convexas. 
  
 

10.5.4 Lentes esféricas 
 
A convenção de sinais para lentes é a mesma para uma superfície refractora esférica. 
 

10.5.4.1 Fórmulas 

 
Fórmula de Descartes para lentes delgadas 
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Equação dos fabricantes de lentes no ar 
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donde combinando as duas últimas equações temos 
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fqp
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=−  

 
quanto aos focos objecto e imagem eles estão localizados simetricamente em ambos os lados da lente 
delgada. Se f for positiva, a lente é convergente, e se for negativa, a lente é divergente. 
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Figura 10- 18 Raios principais e formação de imagem em lentes delgadas convergentes e divergentes. 
 
 
 
 O aumento transversal produzido por uma superfície refractora esférica é dado por (ver figura 10-
18): 
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10.5.4.2 Associação de lentes delgadas 

 
Para lentes em contacto temos 
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para lentes separadas por uma distância t temos 
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